首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《高分子学报》2021,52(9):1058-1075
血管阻断剂(VDAs)因其在实体肿瘤治疗中的巨大潜力而引起人们的广泛关注.本文针对本课题组近年来在高分子血管阻断剂纳米药物抗肿瘤治疗方面的基础研究进行了总结.首先发现了纳米药物的瘤内低渗透性可显著提高血管阻断剂的肿瘤血管靶向性和抑瘤能力,进而构建了高分子血管阻断剂纳米药物;其次针对高分子血管阻断剂纳米药物治疗所引起的不利宿主反应,引入小分子抑制剂或激动剂进行联合治疗;然后利用其调控肿瘤微环境并创建肿瘤选择性药物激活递送系统;最后针对其治疗所产生的肿瘤凝血微环境提出了新的主动靶向策略——链式自放大肿瘤靶向,实现了高效的肿瘤靶向药物递送.这项工作突出了高分子血管阻断剂纳米药物在肿瘤治疗中的潜力,并对其未来研究方向作了简要展望,以促进其临床转化.  相似文献   

2.
沈娟  朱阳  师红东  刘扬中 《化学进展》2018,30(10):1557-1572
以顺铂为代表的小分子铂类抗癌药物是临床应用的一线化疗药物,但其严重的毒副作用和难以克服的耐药性限制了铂类药物的临床应用和研发。运用纳米药物递送技术可以实现药物的靶向递送和可控释放,来提高药物的生物利用度,降低药物的毒副作用以及耐药性,为癌症的治疗带来新的希望。此外,丰富多样的纳米递送体系易于实现药物与具有生物学活性试剂的共运输,从而为各种治疗策略以及诊疗策略的联用提供可能,为最终实现癌症的精准治疗展现广阔前景。本文从靶向递药、药物可控释放、联合治疗、诊疗一体化四个方面对铂类抗癌药物的多功能纳米递送体系在癌症治疗中的最新研究进展进行综述,同时通过列举最新研究成果,展示了新材料、新技术以及新颖设计思想在铂基纳米递送体系中的应用。  相似文献   

3.
血管阻断剂(VDAs)因其在实体肿瘤治疗中的巨大潜力而引起人们的广泛关注.本文针对本课题组近年来在高分子血管阻断剂纳米药物抗肿瘤治疗方面的基础研究进行了总结.首先发现了纳米药物的瘤内低渗透性可显著提高血管阻断剂的肿瘤血管靶向性和抑瘤能力,进而构建了高分子血管阻断剂纳米药物;其次针对高分子血管阻断剂纳米药物治疗所引起的不利宿主反应,引入小分子抑制剂或激动剂进行联合治疗;然后利用其调控肿瘤微环境并创建肿瘤选择性药物激活递送系统;最后针对其治疗所产生的肿瘤凝血微环境提出了新的主动靶向策略——链式自放大肿瘤靶向,实现了高效的肿瘤靶向药物递送.这项工作突出了高分子血管阻断剂纳米药物在肿瘤治疗中的潜力,并对其未来研究方向作了简要展望,以促进其临床转化.  相似文献   

4.
药物递送系统是将药物输送到药物作用靶点的系统,理想的递送系统可以提高药物作用效果并降低给药剂量和毒副作用.本文综述了药物递送系统中的多肽类药物递送系统的研究进展.多肽具有易合成、易代谢、免疫原性低、毒副作用低等优点,多肽支链上大量的官能团可以和药物偶联,是药物递送系统的重要发展方向.本文从靶向肽、穿透肽、响应肽和组装肽四个方面介绍了多肽药物递送系统的原理和实例.组装肽可以形成纳米结构,显著提升多肽药物递送系统的稳定性,可以实现长效释放.组装肽体内原位调控进一步增加了多肽药物递送系统的智能型、精准性,展现出巨大的转化潜力.  相似文献   

5.
王蔚  袁直 《高分子通报》2013,(1):137-154
肝脏疾病是威胁人类生命健康的重要疾病之一,对肝脏疾病检测及治疗方法的研究也引起人们的极大重视。靶向药物递送系统(TDDS)可将药物选择性地输送到靶点组织,从而提高药物的生物利用率并降低毒副作用,已引起了研究者的广泛关注。近年来,越来越多的研究尝试将靶向药物递送系统应用于肝脏疾病的显像检测以及药物/基因治疗,并取得了十分显著的成绩。本文将对近年来开发的新型纳米肝靶向给药系统,尤其是配体-受体介导的主动肝靶向给药系统在药物/基因递送以及显影检测方面的最新进展做一个综述,对各靶向给药系统的肝靶向能力进行了总结对比,并对肝靶向给药系统的发展方向进行了预测。  相似文献   

6.
纳米药物在癌症的精准医疗方面具有广阔的应用前景,但纳米材料易被机体免疫系统识别并清除的特性使得其在癌症治疗方面的应用存在很大的局限性.受自然界生物系统的启发,生物细胞介导的药物递送系统近年来得到了广泛关注.该技术通过将生物体内源性细胞膜作为功能材料包覆在纳米药物表面,赋予其细胞膜的天然属性,或者将纳米载药粒子直接与活细胞共孵育,制备载药细胞,有效地将生物体"自体"的性质与"人工"纳米材料的优势相结合.这不仅大大降低了纳米药物的免疫原性,延长其血液循环时间,而且还可使其具备更强的肿瘤靶向能力.本文初步探讨了生物细胞仿生药物递送系统在肿瘤治疗中的研究进展并对其未来研究进行展望.  相似文献   

7.
毕洪梅  韩晓军 《化学进展》2018,30(12):1920-1929
复合磁性生物材料的发展和应用已引起生物医学领域的极大关注。磁性纳米粒子因其易功能化而具有靶向药物传递、可控药物释放及磁成像特性逐渐成为药物传递和新型诊疗领域最有前途的材料之一。基于磁性纳米粒子或掺杂的铁氧化物构建的远程触发磁性载药递送系统,有望实现在运输过程中携载药物不泄露的情况下,提高药物递送效率且对病灶周围的健康细胞无毒或低毒性。为构建理想的可控靶向磁性药物递送系统,多种材料或配体可以与磁性纳米粒子复合来构建更安全有效的磁性药物递送系统。一些生物分子、聚合物及天然产物等通过与磁性纳米粒子相结合,构建出可用于药物传递且具有独特性质的磁性复合新材料。迄今为止,具有磁场应答能力的磁性药物递送载体已经在远程控制药物释放领域得到了长足发展。本文总结了近年来磁性药物递送载体作为远程控制治疗体系在设计与构建上的研究进展。重点关注了磷脂分子、聚合物、多孔微纳米材料以及天然产物等与其构建的复合材料,并对当前磁性复合特定给药载体的优点、局限及发展前景等做了简要阐述。  相似文献   

8.
癌症是严重威胁人类健康和生命的重大疾病之一,目前化疗是临床癌症治疗的主要手段。但是由于癌症发病机制的复杂性和异质性,单一疗法通常无法有效地抑制癌症的发展和转移。因此,包含多种抗癌机制的联合疗法成为越来越重要的治疗策略。凭借其增强抗癌疗效和降低毒副作用的能力,联合递送药物和基因的纳米载体已经成为生物医药领域的研究热点。本文综述了联合递送药物和基因的智能抗癌控释载体的最新研究进展,分类介绍了这些联合递送载体的制备方法和作用机制,它们可在肿瘤微环境的刺激因素(如p H、谷胱甘肽和酶等)或者外源性刺激(如温度、超声等)作用下发生结构或构象的变化,从而实现了药物和基因的可控释放,产生协同治疗作用。此外,本文还对联合递送载体的发展前景作了展望。  相似文献   

9.
近年来, 大量研究结果表明纳米技术可显著提高传统药物的疾病治疗效果, 并在生物医学领域引起了广泛关注. 迄今, 多种聚合物纳米体系已被研发并用于药物的靶向递送. 随着纳米技术的不断发展, 各类生物微环境响应的功能基团也被应用于构筑新型药物载体, 以提高患病部位的药物富集及减少药物的毒副作用. 聚合物纳米药物载体在癌症治疗、 代谢类疾病治疗及抗菌等方面展现出巨大潜力. 本文系统评述了聚合物纳米药物载体的最新研究进展及在生物医药方面的应用.  相似文献   

10.
正近日,中科院国家纳米科学中心研究员蒋兴宇、郑文富带领的课题组发表了非病毒纳米载体递送的研究成果。他们开发了一系列非病毒的纳米载体,这些非病毒纳米载体可高效递送CRISPR/Cas9系统到体内,为拓展这一强大基因编辑技术在生命科学和临床领域的应用提供了新途径。相关成果近日发表于德国《应用化学》。  相似文献   

11.
For many years, lipid nanoparticles (LNPs) have been used as delivery vehicles for various payloads (especially various oligonucleotides and mRNA), finding numerous applications in drug and vaccine development. LNP stability and bilayer fluidity are determined by the identities and the amounts of the various lipids employed in the formulation and LNP efficacy is determined in large part by the lipid composition which usually contains a cationic lipid, a PEG-lipid conjugate, cholesterol, and a zwitterionic helper phospholipid. Analytical methods developed for LNP characterization must be able to determine not only the identity and content of each individual lipid component (i.e., the parent lipids), but also the associated impurities and degradants. In this work, we describe an efficient and sensitive reversed-phase chromatographic method with charged aerosol detection (CAD) suitable for this purpose. Sample preparation diluent and mobile phase pH conditions are critical and have been optimized for the lipids of interest. This method was validated for its linearity, accuracy, precision, and specificity for lipid analysis to support process and formulation development for new drugs and vaccines.  相似文献   

12.
Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.  相似文献   

13.
Lipid nanoparticles (LNPs) have been employed for drug delivery in small molecules, siRNA, mRNA, and pDNA for both therapeutics and vaccines. Characterization of LNPs is challenging because they are heterogeneous mixtures of large complex particles. Many tools for particle size characterization, such as dynamic and static light scattering, have been applied as well as morphology analysis using electron microscopy. CE has been applied for the characterization of many different large particles such as liposomes, polymer, and viruses. However, there have been limited efforts to characterize the surface charge of LNPs and CIEF has not been explored for this type of particle. Typically, LNPs for delivery of oligonucleotides contain at least four different lipids, with at least one being an ionizable cationic lipid. Here, we describe the development of an imaged capillary isoelectric focusing method used to measure the surface charge (i.e., pI) of an LNP‐based mRNA vaccine. This method is capable of distinguishing the pI of LNPs manufactured with one or more different ionizable lipids for the purpose of confirming LNP identity in a manufacturing setting. Additionally, the method is quantitative and stability‐indicating making it suitable for both process and formulation development.  相似文献   

14.
The development of lipid nanoparticles (LNPs) has enabled a successful clinical application of mRNA vaccines. However, disclosure of design principles for the core component-ionizable lipids (ILs), improving the delivery efficacy and organ targeting of LNPs, remains a formidable challenge. Herein, we report a powerful strategy to modulate ILs in one-step chemistry using the Ugi four-component reaction (Ugi-4CR) under mild conditions. A large IL library of new structures was established simply and efficiently through a multidimensional approach, allowing us to identify the top-performing ILs in delivering mRNA via the formulated LNPs. Adjusting the skeleton of ILs has transformed the organ-specific and robust transfection in mRNA delivery from the liver to the spleen following different administration routes. Of note, a series of isomeric ILs were prepared and we found that the isomers mattered greatly in the performance of LNPs for mRNA delivery. Furthermore, owing to the bis-amide bonds formed in the Ugi-4CR reaction, the ILs within LNPs may form hydrogen bonding intermolecularly, facilitating the colloidal stabilization of LNPs. This work provides clues to the rapid discovery and rational design of IL candidates, assisting the application of mRNA therapeutics.  相似文献   

15.
The discovery of potent new materials for in vivo delivery of nucleic acids depends upon successful formulation of the active molecules into a dosage form suitable for the physiological environment. Because of the inefficiencies of current formulation methods, materials are usually first evaluated for in vitro delivery efficacy as simple ionic complexes with the nucleic acids (lipoplexes). The predictive value of such assays, however, has never been systematically studied. Here, for the first time, by developing a microfluidic method that allowed the rapid preparation of high-quality siRNA-containing lipid nanoparticles (LNPs) for a large number of materials, we have shown that gene silencing assays employing lipoplexes result in a high rate of false negatives (~90%) that can largely be avoided through formulation. Seven novel materials with in vivo gene silencing potencies of >90% at a dose of 1.0 mg/kg in mice were discovered. This method will facilitate the discovery of next-generation reagents for LNP-mediated nucleic acid delivery.  相似文献   

16.
《中国化学快报》2020,31(5):1147-1152
The rigidity of nanoparticles was newly reported to influence their oral delivery. Semi-elastic nanoparticles can enhance the penetration in mucus and uptake by epithelial cells. However, it is still challenging and unclear that the semi-elastic core-shell nanoparticles can enhance the oral bioavailability of peptide drugs. This study was for the first time to validate the semi-elastic core-shell poly(lactic-co-glycolic acid) (PLGA)-lipid nanoparticles (LNPs) as the carrier of the oral peptide drug. The antihypertensive peptide Val-Leu-Pro-Val-Pro (VP5) loaded LNPs (VP5-LNPs) were prepared by a modified thin-film ultrasonic dispersion method. Uptake experiment was performed in Caco-2 and HT-29 cells and monitored by high content screening (HCS) and flow cytometric (FCM). Pharmacokinetics of VP5-LNPs was carried out in Sprague-Dawley (SD) rats and analyzed by DAS 2.0. The optimal VP5-LNPs had an average particle size of 247.3 ± 3.8 nm, zeta potential of −6.57 ± 0.45 mV and excellent entrapment efficiency (EE) of 89.88% ± 1.23%. Transmission electron microscope (TEM) and Differential scanning calorimeter (DSC) further confirmed the core-shell structure. VP5-LNPs could increase the cellular uptake in vitro and have a 2.55-fold increase in AUC0-72 h, indicating a great promotion of the oral bioavailability. The semi-elastic LNPs remarkably improved the oral availability of peptide and could be a promising oral peptide delivery system for peptide drugs in the future.  相似文献   

17.
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer’s disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer’s disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.  相似文献   

18.
Lipid nanoparticles (LNPs) are the most versatile and successful gene delivery systems, notably highlighted by their use in vaccines against COVID-19. LNPs have a well-defined core–shell structure, each region with its own distinctive compositions, suited for a wide range of in vivo delivery applications. Here, we discuss how a detailed knowledge of LNP structure can guide LNP formulation to improve the efficiency of delivery of their nucleic acid payload. Perspectives are detailed on how LNP structural design can guide more efficient nucleic acid transfection. Views on key physical characterization techniques needed for such developments are outlined including opinions on biophysical approaches both correlating structure with functionality in biological fluids and improving their ability to escape the endosome and deliver they payload.  相似文献   

19.
Lipid carrier systems for targeted drug and gene delivery   总被引:19,自引:0,他引:19  
For effective chemotherapy, it is necessary to deliver therapeutic agents selectively to their target sites, since most drugs are associated with both beneficial effects and side effects. The use of lipid dispersion carrier systems, such as lipid emulsions and liposomes, as carriers of lipophilic drugs has attracted particular interest. A drug delivery system can be defined as a methodology for manipulating drug distribution in the body. Since drug distribution depends on the carrier, administration route, particle size of the carrier, lipid composition of the carrier, electric charge of the carrier and ligand density of the targeting carrier, these factors must be optimized. Recently, the lipid carrier system has also been applied to gene delivery systems for gene therapy. However, in both drug and gene medicine cases, a lack of cell-selectivity limits the wide application of this kind of drug and/or gene therapy. Therefore, lipid carrier systems for targeted drug and gene delivery must be developed for the rational therapy. In this review, we shall focus on the progress of research into lipid carrier systems for drug and gene delivery following systemic or local injection.  相似文献   

20.
The ability of nanoparticles to manipulate the molecules and their structures has revolutionized the conventional drug delivery system. The chitosan nanoparticles, because of their biodegradability, biocompatibility, better stability, low toxicity, simple and mild preparation methods, offer a valuable tool to novel drug delivery systems in the present scenario. Besides ionotropic gelation method, other methods such as microemulsion method, emulsification solvent diffusion method, polyelectrolyte complex method, emulsification cross-linking method, complex coacervation method and solvent evaporation method are also in use. The chitosan nanoparticles have also been reported to have key applications in parentral drug delivery, per-oral administration of drugs, in non-viral gene delivery, in vaccine delivery, in ocular drug delivery, in electrodeposition, in brain targeting drug delivery, in stability improvement, in mucosal drug delivery in controlled drug delivery of drugs, in tissue engineering and in the effective delivery of insulin. The present review describes origin and properties of chitosan and its nanoparticles along with the different methods of its preparation and the various areas of novel drug delivery where it has got its application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号