首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elementary reaction of ground state boron atoms, (B((2)P(j))), with ammonia (NH(3)(X(1)A(1))) was conducted under single collision conditions at a collision energy of 20.5 ± 0.4 kJ mol(-1) in a crossed molecular beams machine. Combined with electronic structure calculations, our experimental results suggested that the reaction was initiated by a barrier-less addition of the boron atom to the nonbonding electron pair of the nitrogen atom forming a weakly bound BNH(3) collision complex. This intermediate underwent a hydrogen shift to a doublet HBNH(2) radical that decomposed via atomic hydrogen loss to at least the imidoborane (HBNH(X(1)Σ(+)) molecule, an isoelectronic species of acetylene (HCCH(X(1)Σ(g)(+))). Our studies are also discussed in light of the isoelectronic C(2)H(3) potential energy surface accessed via the isoelectronic carbon-methyl system.  相似文献   

2.
The chemical dynamics of the reaction of ground state carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A'), were examined under single collision conditions at collision energies of 29.9 and 43.9 kJ mol(-1) using the crossed molecular beams approach. The experimental studies were combined with electronic structure calculations on the triplet C4H3N potential energy surface (H. F. Su, R. I. Kaiser, A. H. H. Chang, J. Chem. Phys., 2005, 122, 074320). Our investigations suggest that the reaction follows indirect scattering dynamics via addition of the carbon atom to the carbon-carbon double bond of the vinyl cyanide molecule yielding a cyano cyclopropylidene collision complex. The latter undergoes ring opening to form cis/trans triplet cyano allene which fragments predominantly to the 1-cyano propargyl radical via tight exit transition states; the 3-cyano propargyl isomer was inferred to be formed at least a factor of two less; also, no molecular hydrogen elimination channel was observed experimentally. These results are in agreement with the computational studies predicting solely the existence of a carbon versus hydrogen atom exchange pathway and the dominance of the 1-cyano propargyl radical product. The discovery of the cyano propargyl radical in the reaction of atomic carbon with vinyl cyanide under single collision conditions implies that this molecule can be an important reaction intermediate in combustion flames and also in extraterrestrial environments (cold molecular clouds, circumstellar envelopes of carbon stars) which could lead to the formation of cyano benzene (C6H5CN) upon reaction with a propargyl radical.  相似文献   

3.
The reaction dynamics of the boron monoxide radical ((11)BO; X(2)Σ(+)) with ethylene (C(2)H(4); X(1)A(g)) were investigated at a nominal collision energy of 12.2 kJ mol(-1) employing the crossed molecular beam technique and supported by ab initio and statistical (RRKM) calculations. The reaction is governed by indirect scattering dynamics with the boron monoxide radical attacking the carbon-carbon double bond of the ethylene molecule without entrance barrier with the boron atom. This addition leads to a doublet radical intermediate (O(11)BH(2)CCH(2)), which either undergoes unimolecular decomposition through hydrogen atom emission from the C1 atom via a tight transition state located about 13 kJ mol(-1) above the separated products or isomerizes via a hydrogen shift to the O(11)BHCCH(3) radical, which also can lose a hydrogen atom from the C1 atom. Both processes lead eventually to the formation of the vinyl boron monoxide molecule (C(2)H(3)BO; X(1)A'). The overall reaction was determined to be exoergic by about 40 kJ mol(-1). The reaction dynamics are also compared to the isoelectronic ethylene (C(2)H(4); X(1)A(g)) - cyano radical (CN; X(2)Σ(+)) system studied earlier.  相似文献   

4.
The reaction dynamics of boron monoxide (BO; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) were investigated under single collision conditions at a collision energy of 13 kJ mol(-1) employing the crossed molecular beam technique; electronic structure RRKM calculations were conducted to complement the experimental data. The reaction was found to have no entrance barrier and proceeded via indirect scattering dynamics initiated by an addition of the boron monoxide radical with its boron atom to the carbon-carbon triple bond forming the O(11)BHCCH intermediate. The latter decomposed via hydrogen atom emission to form the linear O(11)BCCH product through a tight exit transition state. The experimentally observed sideways scattering suggests that the hydrogen atom leaves perpendicularly to the rotational plane of the decomposing complex and almost parallel to the total angular momentum vector. RRKM calculations indicate that a minor micro channel could involve a hydrogen migration in the initial collision to form an O(11)BCCH(2) intermediate, which in turn can also emit atomic hydrogen. The overall reaction to form O(11)BCCH plus atomic hydrogen from the separated reactants was determined to be exoergic by 62 ± 8 kJ mol(-1). The reaction dynamics were also compared with the isoelectronic reaction of the cyano radical (CN; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) studied earlier.  相似文献   

5.
Crossed molecular beams experiments were utilized to explore the chemical reaction dynamics of ground-state cyano radicals, CN(X(2)Sigma(+)), with propylene (CH3CHCH2) together with two d3-isotopologues (CD3CHCH2, CH3CDCD2) as potential pathways to form organic nitriles under single collision conditions in the atmosphere of Saturn's moon Titan and in the interstellar medium. On the basis of the center-of-mass translational and angular distributions, the reaction dynamics were deduced to be indirect and commenced via an addition of the electrophilic cyano radical with its radical center to the alpha-carbon atom of the propylene molecule yielding a doublet radical intermediate: CH3CHCH2CN. Crossed beam experiments with propylene-1,1,2-d3 (CH3CDCD2) and propylene-3,3,3-d3 (CD3CHCH2) indicated that the reaction intermediates CH3CDCD2CN (from propylene-1,1,2-d3) and CD3CHCH2CN (from propylene-3,3,3-d3) eject both atomic hydrogen through tight exit transition states located about 40-50 kJ mol(-1) above the separated products: 3-butenenitrile [H2CCDCD2CN] (25%), and cis/trans-2-butenenitrile [CD3CHCHCN] (75%), respectively, plus atomic hydrogen. Applications of our results to the chemical processing of cold molecular clouds like TMC-1 and OMC-1 are also presented.  相似文献   

6.
A number of researchers have indicated that a direct reaction of acetylene with oxygen needs to be included in detailed reaction mechanisms in order to model observed flame speeds and induction times. Four pathways for the initiation of acetylene oxidation to chain propagation are considered and the rate constants are compared with values used in the mechanisms:
  • 1 3O2 + HCCH to triplet adduct and reaction on the triplet surface
  • 2 3O2 + HCCH to triplet adduct, conversion of triplet adduct to singlet adduct via collision in the reaction environment, with further reaction of the singlet adduct
  • 3 1O2 + HCCH to singlet adduct
  • 4 Isomerization of HCCH to vinylidene and then vinylidene insertion reaction with 3O2
Elementary reaction pathways for oxidation of acetylene by addition reaction of O2(3Σ) on the triplet surface are analyzed. ab initio molecular orbital and density functional calculations are employed to estimate the thermodynamic properties of the reactants, transition states, and products in this system. Acetylene oxidation reaction over the triplet surface is initiated by addition of molecular oxygen, O2(3Σ), to a carbon atom, forming a triplet peroxy‐ethylene biradical. The reaction path to major products, either two formyl radicals or glyoxal radical plus hydrogen atom, involves reaction through three transition states: O2(3Σ) addition to acetylene (TS1), peroxy radical addition at the ipso‐carbon to form a dioxirane (TS2), and cleavage of O O bond in a three‐member ring (TS3). Single‐point QCISD(T) and B3LYP calculations with large basis sets were performed to try to verify barrier heights on important transition states. A second pathway to product formation is through spin conversion of the triplet peroxy‐ethylene biradical to the singlet by collision with bath gas. Rapid ring closure of the singlet peroxy‐ethylene biradical to form a four‐member ring is followed by breaking of the peroxy bond to form glyoxal, which further dissociates to either two formyl radicals or a glyoxal radical plus hydrogen atom. The overall forward rate constant through this pathway is estimated to be kf = 2.21 × 107 T1.46e−33.1(kcal/mol)/RT. Two additional pathways from the literature, HCCH + O2(1Δ) and pressure‐dependent isomerization of acetylene to vinylidene and then vinylidene reaction with O2(3Σ), are also evaluated for completeness. CHEMKIN modeling on each of the four proposed pathways is performed and concentration profiles from these reactions are evaluated at 0.013 atm and 1 atm over 35 milliseconds. Through reaction on the triplet surface is evaluated to be not important. Formation of the triplet adduct with conversion (via collision) to a singlet and the vinylidene paths show similar and lower rates than those used in mechanisms, respectively. Our implementation of the HCCH + O2(1Δ) pathway of Benson suggests the need to include: (i) reverse reaction, (ii) barriers to further reaction of the initial adduct plus (iii) further evaluation of the O2(1Δ) addition barrier. The pathways from triplet adduct with conversion to singlet and from vinylidene are both recommended for initiation of acetylene oxidation. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 623–641, 2000  相似文献   

7.
The structures and energies of the 1:1 acetylene/cyanoacetylene, acetylene/dicyanoacetylene and cyanoacetylene/dicyanoacetylene complexes in solid argon matrices have been investigated using FT-IR spectroscopy and ab initio calculations, at the B3LYP/6-31G** level of theory. For the three complexes, predicted frequency shifts for the L shaped structures, characterized by a hydrogen bond between the nitrogen of the cyano group and the acetylenic proton, were found to be in good agreement with those experimental. Only in the case of acetylene/cyanoacetylene complex, we obtained a second minimum with a T shaped structure characterized by an interaction between the proton of cyanoacetylene and the Π system of acetylene. It appears clearly that HC3N acts as an electrophile or as a nucleophile in these complexes.  相似文献   

8.
Reaction between 1,2-dibromobenzene and the Si(111)-7x7 surface has been studied theoretically on the DFT(B3LYP/6-31G(d)) level. A 12-atom silicon cluster, representing two adatoms and one rest atom of the faulted half of the unit cell, was used to model the silicon surface. The first step of the reaction was a covalent attachment (chemisorption) of an intact 1,2-dibromobenzene molecule to the silicon cluster. Binding energies were calculated to be between 1.04 and 1.14 eV, depending on the orientation of the molecule. A second step of the reaction was the transfer of the Br atom to the silicon cluster. Activation energies for the transfer of the Br atom were calculated to be between 0.4 and 0.6 eV, suggesting that the thermal bromination reaction occurs on a microsecond time scale at room temperature. A third step of the reaction could be the transfer of the second Br atom of the molecule, the desorption of the organic radical, or the change of the adsorption configuration of the radical, depending on the original orientation of the adsorbed intact molecule. A novel, aromatic, two-sigma-bound adsorbed configuration of the C6H4 radical, in which a carbon ring of the radical is perpendicular to the silicon surface, has been introduced to explain previous experimental observations (Surf. Sci. 2004, 561, 11).  相似文献   

9.
The microwave spectra of four isotopologues of the CHBrF(2)···HCCH weakly bound dimer have been measured in the 6-18 GHz region using chirped-pulse and Balle-Flygare Fourier-transform microwave spectroscopy. Spectra of (13)CH(79)BrF(2) and (13)CH(81)BrF(2) monomers have also been measured, and spectroscopic constants are reported. Measurement of spectra for the (79)Br and (81)Br isotopologues of CHBrF(2) complexed with both (12)C(2)H(2) and (13)C(2)H(2) have allowed the determination of a structure with C(s) symmetry for this complex. CHBrF(2) interacts with the triple bond of acetylene via a C-H···π contact (R(H···π) = 2.670(8) ?) with the Br atom lying in the ab plane, located 3.293(40) ? from a hydrogen atom of the HCCH molecule. The structure of CHBrF(2)···HCCH has been compared with recently studied related acetylene complexes, including a comparison with (and further structural analysis of) the CHClF(2)···HCCH complex.  相似文献   

10.
The interactions of cyanoacetylene and diacetylene with a Si(111)-7 x 7 surface have been studied as model systems to mechanistically understand the chemical binding of unsaturated organic molecules to diradical-like silicon dangling bonds. Vibrational studies show that cyanoacetylene mainly binds to the surface through a diradical reaction involving both cyano and C[triple bond]C groups with an adjacent adatom-rest atom pair at 110 K, resulting in an intermediate containing triple cumulative double bonds (C=C=C=N). On the other hand, diacetylene was shown to the covalently attached to Si(111)-7 x 7 only through one of its C[triple bond]C groups, forming an enynic-like structure with a C=C-C[triple bond]C skeleton. These chemisorbed species containing triple cumulative double bonds (C=C=C=N) and C=C-C[triple bond]C may be employed as precursors (or templates) for further construction of bilayer organic films on the semiconductor surfaces.  相似文献   

11.
Guided by ab initio calculations, Fourier transform microwave spectra in the 6-21 GHz region are obtained for seven isotopomers of the complex formed between 1-chloro-1-fluoroethylene and acetylene. These include the four possible combinations of (35)Cl- and (37)Cl-containing CH(2)CClF with the most abundant acetylene isotopic modification, HCCH, and its H(13)C(13)CH analogue, as well as three singly substituted deuterated isotopomers. Analysis of the spectra determines the rotational constants and additionally, the complete chlorine quadrupole hyperfine coupling tensors in both the inertial and principal electric field gradient axis systems, and where appropriate, the diagonal components of the deuterium quadrupole coupling tensors. The inertial information contained in the rotational constants provides the structure for CH(2)CClF-HCCH: a primary, hydrogen bonding interaction existing between the HCCH donor and the F atom acceptor on the 1-chloro-1-fluoroethylene moiety, while a secondary interaction occurs between the acetylenic bond on the HCCH molecule and the H atom cis to the hydrogen-bonded F atom on the substituted ethylene, which causes the hydrogen bond to deviate from linearity. This is similar to the structure obtained for 1,1-difluoroethylene-HCCH [H. O. Leung and M. D. Marshall, J. Chem. Phys. 126, 154301 (2006)], and indeed, to within experimental uncertainty, the intermolecular interactions in CH(2)CClF-HCCH and its 1,1-difluoroethylene counterpart are practically indistinguishable, even though ab initio calculations at the MP2∕6-311G++(2d, 2p) level suggest that the former complex is more strongly bound.  相似文献   

12.
A novel ethynyl addition mechanism (EAM) has been established computationally as a practicable alternative to high-temperature hydrogen-abstraction-C2H2-addition (HACA) sequences to form polycyclic aromatic hydrocarbon (PAH) -like species under low-temperature conditions in the interstellar medium and in hydrocarbon-rich atmospheres of planets and their moons. Initiated by an addition of the ethynyl radical (C2H) to the ortho-carbon atom of the phenylacetylene (C6H5C2H) molecule, the reactive intermediate loses rapidly a hydrogen atom, forming 1,2-diethynylbenzene. The latter can react with a second ethynyl molecule via addition to a carbon atom of one of the ethynyl side chains. A consecutive ring closure of the intermediate leads to an ethynyl-substituted naphthalene core. Under single-collision conditions as present in the interstellar medium, this core loses a hydrogen atom to form ethynyl-substituted 1,2-didehydronaphthalene. However, under higher pressures as present, for example, in the atmosphere of Saturn's moon Titan, three-body reactions can lead to a stabilization of this naphthalene-core intermediate. We anticipate this mechanism to be of great importance to form PAH-like structures in the interstellar medium and also in hydrocarbon-rich, low-temperature atmospheres of planets and their moons such as Titan. If the final ethynyl addition to 1,2-diethynylbenzene is substituted by a barrierless addition of a cyano (CN) radical, this newly proposed mechanism can even lead to the formation of cyano-substituted naphthalene cores in the interstellar medium and in planetary atmospheres.  相似文献   

13.
The reaction of the ground state atomic carbon, C(3P), with simple unsaturated nitrile, C2H3CN(X1A' (vinyl cyanide), is investigated theoretically to explore the probable routes for the formation of carbon-nitrogen-bearing species in extraterrestrial environments particularly of ultralow temperature. Five collision complexes without entrance barrier as a result of the carbon atom addition to the pi systems of C2H3CN are characterized. The B3YLP/6-311G(d,p) level of theory is utilized in obtaining the optimized geometries, harmonic frequencies, and energies of the intermediates, transition states, and products along the isomerization and dissociation pathways of each collision complex. Subsequently, with the facilitation of computed RRKM rate constants at collision energy of 0-10 kcal/mol, the most probable paths for each collision complexes are determined, of which the CCSD(T)/6-311G(d,p) energies are calculated. The major products predicted are exclusively due to the hydrogen atom dissociations, while the products of H2, CN, and CH2 decompositions are found negligible. Among many possible H-elimination products, cyano propargyl (p4) and 3-cyano propargyl (p5) are the most probable, in which p5 can be formed via two intermediates, cyano allene (i8) and cyano vinylmethylene (i6), while p4 is yielded from i8. The study suggests this class of reaction is an important route to the synthesis of unsaturated nitriles at the temperature as low as 10 K, and the results are valuable for future chemical models of interstellar clouds.  相似文献   

14.
A new mechanism of catalyst has been demonstrated in this article. With the interaction between carbon nitride (CN) and encapsulated nickel, the CN in the catalyst has been endowed with new active sites for the adsorption and activation of hydrogen while nickel itself is physically isolated from the contact with reactive molecules. For the selective hydrogenation of acetylene in large amount of ethylene, the catalyst shows excellent ethylene selectivity than the nickel catalyst itself, which is almost totally unselective. Meanwhile, the CN itself is inactive for the reaction. The results of characterization demonstrate that pyridinic nitrogen doped in the carbon matrix should be the active sites for hydrogen dissociative adsorption. The theoretical calculations further confirm the results and provide with the detail in the electron transfer between nickel and CN in the catalyst. The current results supply a new concept for design of high performance catalyst.  相似文献   

15.
Guided by ab initio calculations, Fourier transform microwave rotational spectra in the 6-22 GHz region are obtained for the complex formed between 1,1,2-trifluoroethylene and acetylene, including the normal isotopomer, three of four singly substituted (13)C species obtained in natural abundance, and using commercially available isotopic varieties of acetylene, species containing HCCD and H(13)C(13)CH. Although the ab initio calculations suggest two possible low energy planar arrangements for the molecules in the complex, only a single, unique structure is obtained from a combined analysis of the rotational constants derived from the spectra and atomic positions determined using Kraitchman [Am. J. Phys. 21, 17 (1953)] substitution coordinates. This structure is similar to that obtained for the CF(2)CHF[Single Bond]HF complex [H. O. Leung and M. D. Marshall, J. Chem. Phys. 126, 114310 (2007)] in which both the primary and secondary interactions occur between the HCCH molecule and a F atom and a H atom bonded to the same carbon of CF(2)CHF. The 2.748(15) A hydrogen bond has acetylene as the donor and 1,1,2-trifluoroethylene as the acceptor and forms a 104.49(15) degrees C[Single Bond]Fcdots, three dots, centeredH angle. The 2.8694(9) A secondary interaction between the pi bond of acetylene and the H atom geminal to the acceptor F atom causes the hydrogen bond to deviate 69.24(67) degrees from linearity. This large deviation from linearity and the similarity of the two intermolecular bond lengths suggest that the two interactions are becoming comparable in importance.  相似文献   

16.
We carried out the crossed molecular beam reaction of ground state methylidyne radicals, CH(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), at a nominal collision energy of 16.8 kJ mol(-1). Under single collision conditions, we identified both the atomic and molecular hydrogen loss pathways forming C(3)H(2) and C(3)H isomers, respectively. A detailed analysis of the experimental data suggested the formation of c-C(3)H(2) (31.5 ± 5.0%), HCCCH/H(2)CCC (59.5 ± 5.0%), and l-HCCC (9.0 ± 2.0%). The reaction proceeded indirectly via complex formation and involved the unimolecular decomposition of long-lived propargyl radicals to form l-HCCC plus molecular hydrogen and HCCCH/H(2)CCC plus atomic hydrogen. The formation of c-C(3)H(2) was suggested to be produced via unimolecular decomposition of the cyclopropenyl radical, which in turn could be accessed via addition of the methylidyne radical to both carbon atoms of the acetylene molecule or after an initial addition to only one acetylenic carbon atom via ring closure. This investigation brings us closer to unraveling of the reaction of important combustion radicals-methylidyne-and the connected unimolecular decomposition of chemically activated propargyl radicals. This also links to the formation of C(3)H and C(3)H(2) in combustion flames and in the interstellar medium.  相似文献   

17.
The structures of three closely related heterodimetallic cyano complexes, [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3), formed in reactions between [Pt(II)(CN)(4)](2)(-) and Tl(III) cyano complexes, have been studied in aqueous solution. Multinuclear NMR data ((205)Tl, (195)Pt, and (13)C) were used for identification and quantitative analysis. X-ray absorption spectra were recorded at the Pt and Tl L(III) edges. The EXAFS data show, after developing a model describing the extensive multiple scattering within the linearly coordinated cyano ligands, short Pt-Tl bond distances in the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes: 2.60(1), 2.62(1), and 2.64(1) A for n = 1-3, respectively. Thus, the Pt-Tl bond distance increases with increasing number of cyano ligands on the thallium atom. In all three complexes the thallium atom and five cyano ligands, with a mean Pt-C distance of 2.00-2.01 A, octahedrally coordinate the platinum atom. In the hydrated [(NC)(5)Pt-Tl(CN)(H(2)O)(4)](-) species the thallium atom coordinates one cyano ligand, probably as a linear Pt-Tl-CN entity with a Tl-C bond distance of 2.13(1) A, and possibly four loosely bound water molecules with a mean Tl-O bond distance of about 2.51 A. In the [(NC)(5)Pt-Tl(CN)(2)](2)(-) species, the thallium atom probably coordinates the cyano ligands trigonally with two Tl-C bond distances at 2.20(2) A, and in [(NC)(5)Pt-Tl(CN)(3)](3)(-) Tl coordinates tetrahedrally with three Tl-C distances at 2.22(2) A. EXAFS data were reevaluated for previously studied mononuclear thallium(III)-cyano complexes in aqueous solution, [Tl(CN)(2)(H(2)O)(4)](+), [Tl(CN)(3)(H(2)O)], and [Tl(CN)(4)](-), and also for the solid K[Tl(CN)(4)] compound. A comparison shows that the Tl-C bond distances are longer in the dinuclear complexes [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3) for the same coordination number. Relative oxidation states of the metal atoms were estimated from their (195)Pt and (205)Tl chemical shifts, confirming that the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes can be considered as metastable intermediates in a two-electron-transfer redox reaction from platinum(II) to thallium(III). Vibrational spectra were recorded and force constants from normal-coordinate analyses are used for discussing the delocalized bonding in these species.  相似文献   

18.
To explore the reactivities of alkene (-CH=CH(2)) and carboxy (-COOH) group with H-Si under UV irradiation, the addition mechanism for the reactions of SiH(3) radical with propylene and acetic acid was studied by using the B3LYP/6-311++G(d,p) method. Based on the surface energy profiles, the dominant reaction pathways can be established; i.e., SiH(3) adds to the terminal carbon atom of the alkene (-CH=CH(2)) to form an anti-Markovnikov addition product, or adds to the oxygen atom of the carboxy group (-COOH) to form silyl acetate (CH(3)-COOSiH(3)). Because the barrier in the reaction of the carboxy group (39.9 kJ/mol) is much larger than that of alkene (11.97 kJ/mol), we conclude that the reaction of bifunctional molecules (e.g., omega-alkenoic acid) with H-Si under irradiation condition is highly selective; i.e., the alkene group (-CH=CH(2)) reacts with SiH(3) substantially faster than the carboxyl group (-COOH), which agrees well with the experimental results. This provides the possibility of preparing carboxy-terminated monolayers on silicon surface from omega-alkenoic acids via direct photochemical reaction.  相似文献   

19.
The reaction of dicarbon molecules in their electronic ground, C2(X1Sigma(g)+), and first excited state, C2(a3Pi(u)), with acetylene, C2H2(X1Sigma(g)+), to synthesize the 1,3-butadiynyl radical, C4H(X2Sigma+), plus a hydrogen atom was investigated at six different collision energies between 10.6 and 47.5 kJ mol(-1) under single collision conditions. These studies were contemplated by crossed molecular beam experiments of dicarbon with three acetylene isotopomers C2D2(X1Sigma(g)+), C2HD (X1Sigma+), and 13C2H2(X1Sigma(g)+) to elucidate the role of intersystem crossing (ISC) and of the symmetry of the reaction intermediate(s) on the center-of-mass functions. On the singlet surface, dicarbon was found to react with acetylene through an indirect reaction mechanism involving a diacetylene intermediate. The latter fragmented via a loose exit transition state via an emission of a hydrogen atom to form the 1,3-butadiynyl radical C4H(X2Sigma+). The D(infinity)(h) symmetry of the decomposing diacetylene intermediate results in collision-energy invariant, isotropic (flat) center-of-mass angular distributions of this microchannel. Isotopic substitution experiments suggested that at least at a collision energy of 29 kJ mol(-1), the diacetylene isotopomers are long-lived with respect to their rotational periods. On the triplet surface, the reaction involved three feasible addition complexes located in shallower potential energy wells as compared to singlet diacetylene. The involvement of the triplet surface accounted for the asymmetry of the center-of-mass angular distributions. The detection of the 1,3-butadiynyl radical, C4H(X2Sigma+), in the crossed beam reaction of dicarbon molecules with acetylene presents compelling evidence that the 1,3-butadiynyl radical can be formed via bimolecular reactions involving carbon clusters in extreme environments such as circumstellar envelopes of dying carbon stars and combustion flames.  相似文献   

20.
Trivalent silicon cations are exceptionally strong electron pair acceptors that react, either desired or undesired, with almost any σ and π basic molecule. One way of intramolecular attenuation of the Lewis acidity of these superelectrophiles is by installation of a ferrocene unit at the electron-deficient silicon atom. While well-understood for isoelectronic α-ferrocenyl-substituted carbenium ions and also boranes, the stabilizing interactions between the ferrocene backbone and a positively charged silicon atom are not clear due to the challenge of crystallizing such cations. The structural characterization of our ferrocene-stabilized silicon cation now reveals an unprecedented bonding motif different from its analogues. An extreme dip angle of the silicon atom toward the iron atom is explained by two three-center-two-electron (3c2e) bonds through participation of both the upper and the lower aromatic rings of the ferrocene sandwich structure. The positive charge is still localized at the silicon atom that also retains a quasi-planar configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号