首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove the fundamental theorem about factorization of the phenomenological coefficients for transport in macroporous media. By factorization we mean the representation of the transport coefficients as products of geometric parameters of the porous medium and the parameters characteristic of the multicomponent fluid saturating the porous space. The two permeabilities of the porous medium, the convective and the diffusional ones, are separated. A similarity between the diffusional permeability and the porosity–tortuosity factor of the Kozeny–Carman theory is demonstrated. We do not make any specific assumption about stochastic or deterministic structure of the porous medium. The fluxes in fluid on the pore level are described by general relations of the non-equilibrium thermodynamics.  相似文献   

2.
Effective Correlation of Apparent Gas Permeability in Tight Porous Media   总被引:3,自引:0,他引:3  
Gaseous flow regimes through tight porous media are described by rigorous application of a unified Hagen–Poiseuille-type equation. Proper implementation is accomplished based on the realization of the preferential flow paths in porous media as a bundle of tortuous capillary tubes. Improved formulations and methodology presented here are shown to provide accurate and meaningful correlations of data considering the effect of the characteristic parameters of porous media including intrinsic permeability, porosity, and tortuosity on the apparent gas permeability, rarefaction coefficient, and Klinkenberg gas slippage factor.  相似文献   

3.
4.
Various ways of determining the surface porosity, the relation between the porosity and the surface porosity and the representation of the permeability in terms of the characteristics of the microstructure of the porous medium are analyzed with reference to model porous media with a periodic microstructure. It is shown that it is necessary to distinguish between the geometric (scalar) and physical (tensor) suface porosities and that the geometric surface porosity, the physical surface porosity and the porosity are different characteristics of the porous medium.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 79–85, January–February, 1995.  相似文献   

5.
Two-dimensional porous media whose random cross-sections are derived from site percolation are constructed. The longitudinal flow of a Newtonian fluid in the Stokes approximation is then computed and the longitudinal permeability is obtained. Two methods are used and yield the same result when porosity is low. The Carman equation is shown to apply within ±7% when porosity is within the range from 0 to 0.75. Finally, random structures derived from stick percolation are investigated; results are qualitatively the same, but the Carman equation yields a poorer approximation.  相似文献   

6.
Mauran  S.  Rigaud  L.  Coudevylle  O. 《Transport in Porous Media》2001,43(2):355-376
The Carman–Kozeny correlation is applied to a medium which is consolidated, highly porous and anisotropic: the expanded then compressed natural graphite. The effective textural properties (i.e. the mean pore diameter, porosity and tortuosity) have been measured by a mercury porosimeter and a heterogeneous diffusion cell. The texture and the permeability (according to the Darcy's law) measured for the two main directions of these orthotropic porous media change over a very wide range depending on their apparent mass densities. Experimental data show that only a part of the total porosity participates in the gas flow in steady state conditions.  相似文献   

7.
8.
Characteristics of flow regimes in porous media, along the processes of energy dissipation in each regime, are critical for applications of such media. The current work presents new experimental data for water flow in packed steel spheres of 1- and 3-mm diameters. The porosity of the porous media was about 35 % for both cases. The extensive dataset covered a broad range of flow Reynolds number such that several important flow regimes were encountered, including the elusive pre-Darcy regime, which is rarely or never seen in porous-media literature and turbulent regime. When compared to previous information, the results of this study are seen to add to the divergence of available data on pressure drop in packed beds of spheres. The divergence was also present in the coefficients of Ergun equation and in the Kozeny–Carman constant. The porous media of the current work were seen to exhibit different values of permeability and Forchheimer coefficient in each flow regime. The current data correlated well using the friction factor based on the permeability (measured in the Darcy regime) and the Reynolds number based on the same length scale. An attempt was made to apply recent theoretical results regarding the applicability of the quadratic and cubic Forchheimer corrections in the strong and weak inertia regime.  相似文献   

9.
In the past decades, there was considerable controversy over the Lucas–Washburn (LW) equation widely applied in capillary imbibition kinetics. Many experimental results showed that the time exponent of the LW equation is less than 0.5. Based on the tortuous capillary model and fractal geometry, the effect of tortuosity on the capillary imbibition in wetting porous media is discussed in this article. The average height growth of wetting liquid in porous media driven by capillary force following the [`(L)] s(t) ~ t1/2DT{\overline L _{\rm {s}}(t)\sim t^{1/{2D_{\rm {T}}}}} law is obtained (here D T is the fractal dimension for tortuosity, which represents the heterogeneity of flow in porous media). The LW law turns out to be the special case when the straight capillary tube (D T = 1) is assumed. The predictions by the present model for the time exponent for capillary imbibition in porous media are compared with available experimental data, and the present model can reproduce approximately the global trend of variation of the time exponent with porosity changing.  相似文献   

10.
In this paper, volume averaging in porous media is applied to the microscopic electric charge conservation equation (differential form of Ohm's law) and an expression is derived for the formation factor of a homogeneous porous medium saturated with an electrically conductive fluid. This expression consists of two terms; the first term involves the integral of the current density over the fluid volume and the second term involves the integral of the electric potential over the solid-fluid interface. The physical meaning of the two terms is discussed with the help of three idealized porous media. The results for these media indicate a definite relation between the second term and tortuosity. These results also demonstrate the simplistic nature of the classical definition of the tortuosity as a ratio of geometric lengths. An exact relation between the formation factor and tortuosity is presented. It is shown that the assumed equivalence of the electrical and hydraulic tortuosities is not valid. The general application of the expression for the formation factor is discussed briefly.  相似文献   

11.
The present work attempts to identify the roles of flow and geometric variables on the scaling factor which is a necessary parameter for modeling the apparent viscosity of non-Newtonian fluid in porous media. While idealizing the porous media microstructure as arrays of circular and square cylinders, the present study uses multi-relaxation time lattice Boltzmann method to conduct pore-scale simulation of shear thinning non-Newtonian fluid flow. Variation in the size and inclusion ratio of the solid cylinders generates wide range of porous media with varying porosity and permeability. The present study also used stochastic reconstruction technique to generate realistic, random porous microstructures. For each case, pore-scale fluid flow simulation enables the calculation of equivalent viscosity based on the computed shear rate within the pores. It is observed that the scaling factor has strong dependence on porosity, permeability, tortuosity and the percolation threshold, while approaching the maximum value at the percolation threshold porosity. The present investigation quantifies and proposes meaningful correlations between the scaling factor and the macroscopic properties of the porous media.  相似文献   

12.
In this article, we derive a simple expression for the tortuosity of porous media as a function of porosity and of a single parameter characterizing the shape of the porous medium components. Following its value, a very large range of porous materials is described, from non-tortuous to high tortuosity ones with percolation limits. The proposed relation is compared with a widely used expression derived from percolation theory, and its predictive power is demonstrated through comparison with numerical simulations of diffusion phenomena. Application to the tortuosity of hydrated polymeric membranes is shown.  相似文献   

13.
Understanding the connection between pore structure and NMR behavior of fluid-saturated porous rock is essential in interpreting the results of NMR measurements in the field or laboratory and in establishing correlations between NMR parameters and petrophysical properties. In this paper we use random-walk simulation to study NMR relaxation and time-dependent diffusion in 3D stochastic replicas of real porous media. The microstructures are generated using low-order statistical information (porosity, void–void autocorrelation function) obtained from 2D images of thepore space. Pore size distributions obtained directly by a 3D pore space partitioning method and indirectly by inversion of NMR relaxation data are compared for the first time. For surface relaxation conditions typical of reservoir rock, diffusional coupling between pores of different size is observed to cause considerable deviations between the two distributions. Nevertheless, the pore space correlation length and the size of surface asperity are mirrored in the NMR relaxation data for the media studied. This observation is used to explain the performance of NMR-based permeability correlations. Additionally, the early time behavior of the time-dependent diffusion coefficient is shown to reflect the average pore surface-to-volume ratio. For sufficiently high values of the self-diffusion coefficient, the tortuosity of the pore space is also recovered from the long-time behavior of the time-dependent diffusion coefficient, even in the presence of surface relaxation. Finally, the simulations expose key limitations of the stochastic reconstruction method, and allow suggestions for future development to be made.  相似文献   

14.

The stress dependency of the porosity and permeability of porous rocks is described theoretically by representing the preferential flow paths in heterogeneous porous rocks by a bundle of tortuous cylindrical elastic tubes. A Lamé-type equation is applied to relate the radial displacement of the internal wall of the cylindrical elastic tubes and the porosity to the variation of the pore fluid pressure. The variation of the permeability of porous rocks by effective stress is determined by incorporating the radial displacement of the internal wall of the cylindrical elastic tubes into the Kozeny–Carman relationship. The fully analytical solutions of the mechanistic elastic pore-shell model developed by combining the Lamé and Kozeny–Carman equations are shown to lead to very accurate correlations of the stress dependency of both the porosity and the permeability of porous rocks.

  相似文献   

15.
Various versions of representations of the percolation Reynolds number for porous media with isotropic and anisotropic flow properties are considered. The formulas are derived and the variants are analyzed with reference to model porous media with a periodic microstructure formed by systems of capillaries and packings consisting of spheres of constant diameter (ideal and fictitious porous media, respectively). A generalization of the Kozeny formula is given for determining the capillary diameter in an ideal porous medium equivalent to a fictitious medium with respect to permeability and porosity and it is shown that the capillary diameter is nonuniquely determined. Relations for recalculating values of the Reynolds number determined by means of formulas proposed earlier are given and it is shown that taking the microstructure of porous media into account, as proposed in [1, 2], makes it possible to explain the large scatter of the numerical values of the Reynolds number in processing the experimental data.  相似文献   

16.
The effect of capillary cross flows on the structure of the displacement front in a two-layer porous medium with different layer permeabilities is examined. It is shown that capillary cross flows along the curved displacement front may lead to stabilization of the displacement. Approximate expressions are obtained for the limiting finger length and the oil displacement coefficient at the moment of breakthrough of the water as functions of the displacement parameters and the form of the functional parameters of the two-phase flow in the porous medium; the results obtained are compared with the results of numerical calculations and the experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 98–104, January–February, 1991.  相似文献   

17.
Two models for combined gas-phase diffusion and advection in porous media, the advective-diffusive model (ADM) and the dusty-gas model (DGM), are commonly used. The ADM is based on a simple linear addition of advection calculated by Darcy's law and ordinary diffusion using Fick's law with a porosity–tortuosity–gas saturation multiplier to account for the porous medium. The DGM applies the kinetic theory of gases to the gaseous components and the porous media (or dust) to develop an approach for combined transport due to diffusion and advection that includes porous medium effect. The ADM and Fick's law are considered to be generally inferior for gas diffusion in porous media, and the more mechanistic DGM is preferred. Under trace gas diffusion conditions, Fick's law overpredicts the gas diffusion flux compared to the DGM. The difference between the two models increases as the permeability decreases. In addition, the difference decreases as the pressure increases. At atmospheric pressure, the differences are minor (<10%) for permeabilities down to about 10–13 m2. However, for lower permeabilities, the differences are significant and can approach two orders of magnitude at a permeability of 10–18 m2. In contrast, at a pressure of 100 atm, the maximum difference for a permeability of 10–18 m2 is only about a factor of 2. A molecule–wall tortuosity coefficient based on the DGM is proposed for trace gas diffusion using Fick's law. Comparison of the Knudsen diffusion fluxes has also been conducted. For trace gases heavier than the bulk gas, the ADM mass flux is higher than the DGM. Conversely, for trace gases lighter than the bulk gas, the ADM mass flux is lower than the DGM. Similar to the ordinary diffusion variation, the differences increase as the permeability decreases, and get smaller as the pressure increases. At atmospheric pressure, the differences are small for higher permeabilities (>10–13 m2) but may increase to about 2.7 for He at lower permeabilities of about 10–18 m2. A modified Klinkenberg factor is suggested to account for differences in the models.  相似文献   

18.
王世芳  吴涛  郑秋莎 《力学季刊》2016,37(4):703-709
基于分形理论及毛细管模型,本文研究了非牛顿幂律流体在各向同性多孔介质中径向流动问题,推导了幂律流体径向有效渗透率的分形解析表达式.研究结果表明,幂律流体径向有效无量纲渗透率模型和Chang and Yortsos’s模型吻合很好;同时还得出幂律流体径向有效渗透率随孔隙率、幂指数的增加而增加,随迂曲度分形维数的增加而减少.  相似文献   

19.
The diffusion of fluids in porous media, composed of regularly aligned plate-like obstacles, was studied by Monte Carlo simulation. The diffusion coefficients and all diagonal components of the diffusion tensor were estimated for these media. The calculated tortuosities were modeled as a function of porosity by using the Koponen’s equation related to percolation threshold. These results indicated that a media with a homogeneous porosity has a heterogeneous tortuosity, is affected by the alignments of the plate-like obstacles. Furthermore, the calculation results were compared with the experimental results for fixed perpendicular plates of Comiti and Renaud as a function of porosity. The results for tortuosity compared well for porosity larger than 0.86.  相似文献   

20.
This article presents a porous media transport approach to model the performance of an air-cooled condenser. The finned tube bundles in the condenser are represented by a porous matrix, which is defined by its porosity, permeability, and the form drag coefficient. The porosity is equal to the tube bundle volumetric void fraction and the permeability is calculated by using the Karman–Cozney correlation. The drag coefficient is found to be a function of the porosity, with little sensitivity to the way this porosity is achieved, i.e., with different fin size or spacing. The functional form was established by analyzing a relatively wide range of tube bundle size and topologies. For each individual tube bundle configuration, the drag coefficient was selected by trial and error so as to make the pressure drop from the porous medium approach match the pressure drop calculated by the heat exchanger design software ASPEN B-JAC. The latter is a well-established commercial heat exchanger design program that calculates the pressure drop by using empirical formulae based on the tube bundle properties. A close correlation is found between the form drag coefficient and the porosity with the drag coefficient decreasing with increasing porosity. A second order polynomial is found to be adequate to represent this relationship. Heat transfer and second law (of thermodynamics) performance of the system has also been investigated. The volume-averaged thermal energy equation is able to accurately predict the hot spots. It has also been observed that the average dimensionless wall temperature is a parabolic function of the form drag coefficient. The results are found to be in good agreement with those available in the open literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号