首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
3.
A method is presented for formulating and numerically integrating index 0 differential-algebraic equations of motion for multibody systems with holonomic and nonholonomic constraints. Tangent space coordinates are defined in configuration and velocity spaces as independent generalized coordinates that serve as state variables in the formulation. Orthogonal dependent coordinates and velocities are used to enforce position, velocity, and acceleration constraints to within specified error tolerances. Explicit and implicit numerical integration algorithms are presented and used in solution of three examples: one planar and two spatial. Numerical results verify that accurate results are obtained, satisfying all three forms of kinematic constraint to within error tolerances embedded in the formulation.  相似文献   

4.
5.
Beji  L.  Pascal  M. 《Nonlinear dynamics》1999,18(4):339-356
In this paper we present a particular architecture of parallel robots which has six-degrees-of-freedom (6-DOF) with only three limbs. The particular properties of the geometric and kinematic models with respect to that of a classical parallel robot are presented. We show that inverse problems have an analytical solution. However, to solve the direct problems, an efficient numerical procedure which needs to inverse only a 3 × 3 passive Jacobian matrix is proposed. In a second step, dynamic equations are derived using the Lagrangian formalism where the joint variables are passive and active joint coordinates. Based on the geometrical properties of the robot, the equations of motion are derived in terms of only nine coordinates related by three kinematic constraints instead of 18 joint coordinates. The computational cost of the dynamic model obtained is reduced by using a minimum set of base inertial parameters.  相似文献   

6.
7.
Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro(VSCMG), which supplies only two internal torques.Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically,when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilibrium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and derivative controller, using the generalized dynamic inverse(GDI)method. The steady-state instability inherent in the GDI controller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude stabilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efcacy of the proposed control strategy.  相似文献   

8.
Variable geometry truss manipulator(VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is presented to model the dynamic equations of a VGTM by independent variables, which consists of two double-octahedral truss units and a 3-revolute-prismatic-spherical(3-RPS) parallel manipulator. In this approach, the kinematic recursive relations of two adjacent bodies and geometric constrains are used to deduce the kinematic equations of the VGTM, and Jourdain's velocity variation principle is adopted to establish the dynamic equations of the system. The validity of the proposed dynamic model is verified by comparison of numerical simulations with the software ADAMS. Besides, an active controller for trajectory tracking of the system is designed by the computed torque method. The effectiveness of the controller is numerically proved.  相似文献   

9.
Optimizing the dynamic response of mechanical systems is often a necessary step during the early stages of product development cycle. This is a complex problem that requires to carry out the sensitivity analysis of the system dynamics equations if gradient-based optimization tools are used. These dynamics equations are often expressed as a highly nonlinear system of ordinary differential equations or differential-algebraic equations, if a dependent set of generalized coordinates with its corresponding kinematic constraints is used to describe the motion. Two main techniques are currently available to perform the sensitivity analysis of a multibody system, namely the direct differentiation and the adjoint variable methods. In this paper, we derive the equations that correspond to the direct sensitivity analysis of the index-3 augmented Lagrangian formulation with velocity and acceleration projections. Mechanical systems with both holonomic and nonholonomic constraints are considered. The evaluation of the system sensitivities requires the solution of a tangent linear model that corresponds to the Newton–Raphson iterative solution of the dynamics at configuration level, plus two additional nonlinear systems of equations for the velocity and acceleration projections. The method was validated in the sensitivity analysis of a set of examples, including a five-bar linkage with spring elements, which had been used in the literature as benchmark problem for similar multibody dynamics formulations, a point-mass system subjected to nonholonomic constraints, and a full-scale vehicle model.  相似文献   

10.
In computational multibody algorithms, the kinematic constraintequations that describe mechanical joints and specified motiontrajectories must be satisfied at the position, velocity andacceleration levels. For most commonly used constraint equations, onlyfirst and second partial derivatives of position vectors with respect tothe generalized coordinates are required in order to define theconstraint Jacobian matrix and the first and second derivatives of theconstraints with respect to time. When the kinematic and dynamicequations of the multibody systems are formulated in terms of a mixedset of generalized and non-generalized coordinates, higher partialderivatives with respect to these non-generalized coordinates arerequired, and the neglect of these derivatives can lead to significanterrors. In this paper, the implementation of a contact model in generalmultibody algorithms is presented as an example of mechanical systemswith non-generalized coordinates. The kinematic equations that describethe contact between two surfaces of two bodies in the multibody systemare formulated in terms of the system generalized coordinates and thesurface parameters. Each contact surface is defined using twoindependent parameters that completely define the tangent and normalvectors at an arbitrary point on the body surface. In the contact modeldeveloped in this study, the points of contact are searched for on lineduring the dynamic simulation by solving the nonlinear differential andalgebraic equations of the constrained multibody system. It isdemonstrated in this paper that in the case of a point contact andregular surfaces, there is only one independent generalized contactconstraint force despite the fact that five constraint equations areused to enforce the contact conditions.  相似文献   

11.
Deformable components in multibody systems are subject to kinematic constraints that represent mechanical joints and specified motion trajectories. These constraints can, in general, be described using a set of nonlinear algebraic equations that depend on the system generalized coordinates and time. When the kinematic constraints are augmented to the differential equations of motion of the system, it is desirable to have a formulation that leads to a minimum number of non-zero coefficients for the unknown accelerations and constraint forces in order to be able to exploit efficient sparse matrix algorithms. This paper describes procedures for the computer implementation of the absolute nodal coordinate formulation' for flexible multibody applications. In the absolute nodal coordinate formulation, no infinitesimal or finite rotations are used as nodal coordinates. The configuration of the finite element is defined using global displacement coordinates and slopes. By using this mixed set of coordinates, beam and plate elements can be treated as isoparametric elements. As a consequence, the dynamic formulation of these widely used elements using the absolute nodal coordinate formulation leads to a constant mass matrix. It is the objective of this study to develop computational procedures that exploit this feature. In one of these procedures, an optimum sparse matrix structure is obtained for the deformable bodies using the QR decomposition. Using the fact that the element mass matrix is constant, a QR decomposition of a modified constant connectivity Jacobian matrix is obtained for the deformable body. A constant velocity transformation is used to obtain an identity generalized inertia matrix associated with the second derivatives of the generalized coordinates, thereby minimizing the number of non-zero entries of the coefficient matrix that appears in the augmented Lagrangian formulation of the equations of motion of the flexible multibody systems. An alternate computational procedure based on Cholesky decomposition is also presented in this paper. This alternate procedure, which has the same computational advantages as the one based on the QR decomposition, leads to a square velocity transformation matrix. The computational procedures proposed in this investigation can be used for the treatment of large deformation problems in flexible multibody systems. They have also the advantages of the algorithms based on the floating frame of reference formulations since they allow for easy addition of general nonlinear constraint and force functions.  相似文献   

12.
在载体位置与姿态均不受控制情况下,结合动量(矩)守恒关系对系统进行了运动学、动力学的分析,得到了漂浮基双臂空间机器人的系统动力学方程.采用PD控制的计算力矩法,得到了系统的闭环动态误差方程,在此基础上设计了针对不确定性的自由漂浮空间机器人的控制方案,提出了一种基于遗传算法的补偿学习控制方法.将补偿学习控制与计算力矩法相结合,利用遗传算法的进化学习消除不确定因素的影响,实现机器人轨迹跟踪的良好控制.  相似文献   

13.
In this paper, an adaptive fuzzy robust H controller is proposed for formation control of a swarm of differential driven vehicles with nonholonomic dynamic models. Artificial potential functions are used to design the formation control input for kinematic model of the robots and matrix manipulations are used to transform the nonholonomic model of each differentially driven vehicle into equivalent holonomic one. The main advantage of the proposed controller is the robustness to input nonlinearity, external disturbances, model uncertainties, and measurement noises, in a formation control of a nonholonomic robotic swarm. Moreover, robust stability proof is given using Lyapunov functions. Finally, simulation results are demonstrated for a swarm formation problem of a group of six unicycles, illustrating the effective attenuation of approximation error and external disturbances, even in the case of robot failure.  相似文献   

14.
The basis for any model-based control of dynamical systems is a numerically efficient formulation of the motion equations, preferably expressed in terms of a minimal set of independent coordinates. To this end the coordinates of a constrained system are commonly split into a set of dependent and independent ones. The drawback of such coordinate partitioning is that the splitting is not globally valid since an atlas of local charts is required to globally parameterize the configuration space. Therefore different formulations in redundant coordinates have been proposed. They usually involve the inverse of the mass matrix and are computationally rather complex. In this paper an efficient formulation of the motion equations in redundant coordinates is presented for general non-holonomic systems that is valid in any regular configuration. This gives rise to a globally valid system of redundant differential equations. It is tailored for solving the inverse dynamics problem, and an explicit inverse dynamics solution is presented for general full-actuated systems. Moreover, the proposed formulation gives rise to a non-redundant system of motion equations for non-redundantly full-actuated systems that do not exhibit input singularities.  相似文献   

15.
In this paper, we use an underactuated four-link gymnast robot (UFGR) with a passive first joint to model a gymnast on the bar, and consider the stabilization of the UFGR at the straight-up position. First, we introduce a coupled relationship between control torques for the UFGR. It decouples some state variables of the UFGR from others and changes the nonlinear UFGR system into a cascade-connected system. And then, we use an energy-based method to design a stabilizing controller for the zero dynamics of the cascade-connected system. And the triangle lemma guarantees the control objective of the UFGR to be achieved. The torque-coupled method transforms the stabilization of an underactuated four-link manipulator into that of an underactuated two-link acrobot. This makes the structure of the control system simple. Moreover, our proposed control strategy is easy to extend to the stabilization control of other multi-input nonlinear underactuated systems. Simulation results using the characteristics parameters of a gymnast demonstrate the validity of the proposed method.  相似文献   

16.
The problem of position control in the operational space of a robot manipulator is addressed in the paper. The proposed controller is based on equations of motion expressed in terms of normalized generalized velocity components (NGVC) which result from decomposition of the manipulator inertia matrix. The sufficient conditions for global exponential stability of the system under the controller are given. It is shown that using the controller an further insight into the system dynamics is possible. The proposed control algorithm is tested via simulation on a spatial manipulator with three degrees of freedom.  相似文献   

17.
研究了在轨服务欠驱动空间柔性机器人的广义递推高效动力学算法. 根据系统中铰的驱动情况分别对铰链定义为主动铰和被动铰,通过判断铰链的类型分别按照两次从系统的顶端到基座的顺序、一次从基座到顶端的顺序进行了系统铰接体惯量的递推、系统冗余力的递推和广义加速度和广义主动力的递推. 通过上述3 种方式的递推过程建立了空间机器人广义递推动力学模型,实现了高效率O(n) 次的计算效率. 然后采用线性多步积分算法,对所建立的微分-代数方程进行了快速的数值求解. 最后通过软件编制仿真验证了本研究内容的正确性和高效性.  相似文献   

18.
On the numerical solution of tracked vehicle dynamic equations   总被引:1,自引:0,他引:1  
In this investigation, the solution of the nonlinear dynamic equations of the multibody tracked vehicle systems are obtained using different procedures. In the first technique, which is based on the augmented formulation that employes the absolute Cartesian coordinates and Lagrange multipliers, the generalized coordinate partitioning of the constraint Jacobian matrix is used to determine the independent coordinates and the associated independent differential equations. An iterative Newton-Raphson algorithm is used to solve the nonlinear constraint equations for the dependent variables. The numerical problems encountered when one set of independent coordinates is used during the simulation of large scale tracked vehicle systems are demonstrated and their relationship to the track dynamics is discussed. The second approach employed in this investigation is the velocity transformation technique. One of the versions of this technique is discussed in this paper and the numerical problems that arise from the use of inconsistent system of kinematic equations are reported. In the velocity transformation technique, the tracked vehicle system is assumed to consist of two kinematically decoupled subsystems; the first subsystem consists of the chassis, the rollers, the sprocket and the idler, while the second subsystem consists of the track which is represented as a closed kinematic chain that consists of rigid links connected by revolute joints. It is demonstrated that the use of one set of recursive equations leads to numerical difficulties because of the change in the track configuration. Singular configurations can be avoided by repeated changes in the recursive equations. The sensitivity of the predictor-corrector multistep numerical integration schemes to the method of formulating the state equations is demonstrated. The numerical results presented in this investigation are obtained using a planner tracked vehicle model that consists of fifty four rigid bodies.  相似文献   

19.
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.  相似文献   

20.
The multidimensional modal theory proposed by Faltinsen,et al.(2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and fixing the order of magnitudes baaed on the Narimanov-Moiseev third order asymptotic hypothesis,the general infinite dimensional modal system is reduced to a five dimensional asymptotic modal system (the system of second order nonlinear ordinary differential equations coupling the generalized time dependent coordinates of free surface wave elevation).The numerical integrations of this modal system discover most important nonlinear phenomena,which agree well with both pervious analytic theories and experimental observations. The results indicate that the multidimensional modal method is a very good tool for solving liquid nonlinear sloshing dynamics and will be developed to investigate more complex sloshing problem in our following work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号