首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
碳氢燃料点火燃烧的简化化学反应动力学模型   总被引:3,自引:1,他引:3  
基于``准稳态'方法建立了一套复杂化学反应动力学模型简化方法和相应的软件SPARCK. 并以3种典型的碳氢燃料------甲烷、乙烯和庚烷为研究对象,从甲烷点火燃烧的GRI2.11详 细基元反应动力学模型出发简化得出了包含14个组分10步总包反应形式的简化化学反应动 力学模型,从乙烯燃烧的51组分365详细基元反应模型出发简化得出了包含20个组分16 步总包反应形式的简化化学反应动力学模型,从庚烷点火燃烧的160组分1540详细基元反 应模型出发简化得出了包含26个组分22步总包反应形式的简化化学反应动力学模型. 通过 对典型激波管试验的结果对比可以看出:得到的简化反应动力学模型能较为有效地再现 详细基元反应模型的反应机理,具有较高的计算精度. 在工程计算中有较好的应用前景.  相似文献   

2.
聚合物软材料兼具柔软性和大变形能力,作为一种智能材料在软体机器人等领域应用广泛.化学活性聚合物分子内包含具有较高反应活性的官能团,如环氧、酯键、羟基、羧基等,可以在一定条件下发生化学反应引起材料体积和性质变化.因此研究化学反应如何调控聚合物变形对开发新的功能型聚合物材料有重要指导意义.本文建立化学活性聚合物-弹性基底双层结构的理论模型并分析其在化学反应诱导下的有限弯曲行为.引入化学反应进度作为Helmholtz自由能独立的状态变量,考虑化学反应对聚合物体积变化和模量的影响,以及反应过程独立的能量耗散机制,并基于Neo-Hookean模型建立起各层内的超弹性本构关系.最后利用Newton-Raphson方法对反应完全时的平面应变稳态问题进行数值求解,得到不同几何和反应影响参数下各层内的弯曲变形和应力分布.  相似文献   

3.
Summary The problem of chemical reaction in an isothermal liminar-flow tubular reactor has been studied by Lauwerier for a first order irreversible reaction. The analysis of Lauwerier is extented in this work to include the case of consecutive irreversible first order reactions. Also the important numerical parameters have been calculated and are tabulated in this paper.  相似文献   

4.
为了探索油气在受限空间热爆燃发生的化学反应机理,以CHEMICAL4.1为平台,分析了C1~C4烷烃混合气体热爆燃过程的系统温度、主要组分浓度和中间产物生成率的变化规律。通过敏感性分析、生成速率分析和路径分析等方法,简化了C1~C4烷烃混合气体的详细机理,得到了一个包含37种组分、80个基元反应组成的简化机理,并进行了对比验证。在反应机理上印证了气体热爆燃过程存在缓慢氧化、快速氧化和反应平衡3个阶段。发现与超氧化氢和过氧化氢有关的基元反应是热爆燃发生的关键反应,而大量产生的氢基和羟基最终导致了热爆燃的发生。  相似文献   

5.
At the present time, great attention is being paid to the problem of the final state of molecular gas systems originating from a steady external effect. This is associated, first of all, with intensive investigations of the properties of molecular gas lasers and also laser initiation of chemical reactions and the isotope separation. The theoretical feasibility is shown in [1, 2] for effectively shifting the chemical equilibrium in dissociation—three-particle recombination reactions, initiated in a single-component gas by resonance laser radiation. The purpose of this paper is to analyze the shift of chemical equilibrium in a binary mixture of molecular gases as a function of the intensity and nature of the laser pumping. It is well known [3] that the equilibrium constant of a chemical reaction can be expressed in terms of the dissociation equilibrium constant of the molecules participating in the reaction This factor permits the problem to be reduced to calculation of the dissociation equilibrium constants.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 3–9, January–February, 1978.The authors express thanks to B. F. Gordiets for numerous discussions of the results obtained and also to R. V. Khokhlov and P. K. Khabibullaev for support and interest in the work.  相似文献   

6.
An investigation of a multicomponent boundary layer taking account of nonequilibrium chemical reactions has been made in a number of publications [1–3]; here, the temperature of the solid was assumed to be known or was determined from the condition of the conservation of energy at the interface between the gas and the solid, taking account of the solution of the equation of thermal conductivity in the solid phase. At the same time, heating of the material of a coating is an unavoidable step in any mechanism of thermokinetic decomposition and, in view of this, it is necessary to take account of the lag of the heat-transfer process inside the solid. Therefore, it is necessary to solve the equation of the energy balance in the solid phase simultaneously with the system of the equations of the boundary layer, i.e., the conjugate problem. The present article discusses the problem of flow around a solid in the vicinity of a frontal critical point, taking account of the dependence of the processes taking place in the solid body on the time, in the presence of two heterogeneous and one homogeneous reactions. The distributions of the velocity, the temperature, and the concentrations in the boundary layer are obtained, as well as the mass rate of entrainment of the material at different moments of time. The time of the change between kinetic and diffusion conditions of the course of the heterogeneous chemical reactions (the ignition time) is determined. It is established that, in the presence of a homogeneous chemical reaction, the mass rate of entrainment is less than with a frozen flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 121–128, March–April, 1974.  相似文献   

7.
Strong deviation of chemical reaction rates from their equilibrium values in vibrationally non-equilibrium gas is shown. Performed analysis is based on a new approach for solving the generalized Boltzmann equation. It allows to overstep the limits of a traditional method, where the part of the collisional integral responsible for chemical reactions is assumed to be small (of the order of the Knudsen number). Another generalization consists in considering both the monomolecular and collisional reaction paths. The influence of non-equilibrium vibrational distributions, which are caused by the chemical reactions, on the chemical reactions themselves is studied. Strong correlation between parallel reactions (when one molecule reacts with a number of others) is shown. The situation when one reaction blocks another one is described. Such a behavior of the reaction rates means the mass action law breakdown.  相似文献   

8.
9.
甲烷气体的冲击化学反应流研究   总被引:1,自引:0,他引:1  
用二级轻气炮加载技术将W89Mo9Ni1Fe1飞片加速到约5.0km/s,撞击封装有接近常态的甲烷气体的LY12铝靶。利用六通道高温计和示波器记录到冲击压缩的甲烷气体的光辐射历史曲线,并获得甲烷气体的冲击波速度与温度。利用一维Euler方程与化学反应方程的全流场耦合,采用甲烷体系的13组元40反应步的化学反应模型,并用3阶WENO数值格式对空间进行离散。为避免刚性过强,化学反应源项用点隐方法处理。由此得到了甲烷的冲击反应流场和波后热力学参数。通过比较,数值结果与实验结果符合较好。最后,解释了甲烷用作电探针保护气体的物理机制。  相似文献   

10.
This article describes three methods of correlating experimental data on the heat conductivity of dissociating systems with a single chemical reaction. Criterial equations for the coefficients of thermal conductivity are given.In studies on dissociating gases, the problem of determining the physical constants of the transport phenomena and, in particular, the coefficient of thermal conductivity is of special interest. In such investigations, however, experimental methods in the high-temperature range are complicated and need further development, while in the case of polyatomic mixtures in which chemical reactions are taking place the practical computations are cumbersome and inaccurate. Therefore, the development of general methods of correlating the available experimental data on the heat conductivity of chemically reacting gases is of definite importance. In this article three methods of evaluating experimental data are discussed in relation to dissociating gases.  相似文献   

11.
Abstract

This paper presents the necessary and sufficient conditions for the minimum weight design of multistory, multispan plane building frames subject to foundation reaction constraints. It proposes a general, analytical, and explicit constructive law with which exact solutions can be derived for a broad class of frames of practical interest subject to compressive reaction constraints only. It is proved that the classical Foulkes mechanism must be modified for this problem so as to include artificial settlements and/or upward displacements wherever the reactions attain the prescribed limiting values. The bay shear distribution law compactly expressed in terms of the enlarged and reduced span lengths defined in this paper clarifies the general features of the minimum weight design.  相似文献   

12.
The homogeneous and heterogeneous reactions in the boundary-layer of a flat surface are considered. The autocatalysts are assumed to be of regular sizes, while the solution is a dilute nanofluid. The heat release due to the chemical reactions is taken into account. The Buongiorno's model is used to describe the behaviors of this reaction system. This configuration makes the current model be different from all previous publications. Multiple solutions are given numerically to the rescaled nonlinear system, whose stability is verified. The results show that the strength coefficients of the homogeneous and heterogeneous reactions are key factors to cause the appearance of the multiple solutions in the distribution of the chemical reactions. Nanofluids enhance the diffusion of heat and help maintain the stability of chemical reactions.  相似文献   

13.
Model reduction methods are relevant when the computation time of a full convection–diffusion–reaction simulation based on detailed chemical reaction mechanisms is too large. In this article, we consider a model reduction approach based on optimization of trajectories and its applicability to realistic combustion models. As many model reduction methods, it identifies points on a slow invariant manifold based on time scale separation in the dynamics of the reaction system. The numerical approximation of points on the manifold is achieved by solving a semi-infinite optimization problem, where the dynamics enter the problem as constraints. The proof of existence of a solution for an arbitrarily chosen dimension of the reduced model (slow manifold) is extended to the case of realistic combustion models including thermochemistry by considering the properties of proper maps. The model reduction approach is finally applied to two models based on realistic reaction mechanisms: ozone decomposition as a small test case and syngas combustion as a test case including all features of a detailed combustion mechanism.  相似文献   

14.
15.
A model of the physico-chemical kinetics of the reactions taking place behind the front of an intense shock wave propagating in air with a speed of 9–14 km/s is proposed. The problem of describing the chemical reactions, namely, molecular dissociation and exchange reactions involving vibrationally excited molecules in the absence of vibrational equilibrium, is solved. The vital role of the vibrational excitation delay in the dissociation of oxygen and nitrogen is established. The rate of the exchange reaction between nitrogen molecules and oxygen atoms in the shock wave depends only slightly on the vibrational excitation level. It is demonstrated that the rate constants for thermally nonequilibrium dissociation reactions can be represented within the framework of the one-temperature approximation at constant vibrational temperatures of the dissociating species satisfying quasi-stationary conditions.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 169–182, March–April, 1995.  相似文献   

16.
Shock waves create a unique environment of high pressure, temperature, strain rate, and gradients thereof. Chemical reactions that occur in this regime can lead to the synthesis of new materials that are not possible under conventional conditions. Shock-induced chemical reactions (also known as shock synthesis) is difficult to study experimentally due to the small time and space scales over which it occurs. To aid in our understanding, numerical simulations of shock-induced chemical reactions (SICR) are performed on the mesoscopic level. The model reaction, Nb+2SiNbSi2, is chosen for this research because it has been studied extensively. Comparisons of the calculated results with the available experimental data are presented to validate the modeling process, and additional calculations are used to determine the reaction threshold.  相似文献   

17.
Igoshin  A. I. 《Fluid Dynamics》1969,4(5):25-27
In this paper we examine the formation of one-dimensional-nonsteady gas flows with account for the influence of thermal conduction, viscosity, diffusion, and chemical reactions. An analogous problem but without account for the effect of diffusion and chemical reactions was examined in [1].It is shown that the effect of chemical reactions is not significant for short times-the gas behaves as an incompressible fluid. The results obtained may be used to calculate gas flows with discontinuous initial conditions with subsequent numerical integration of the Navier-Stokes equations.As examples we consider the flows of binary gas mixtures which arise upon application of thermal flux to the flat end of a moving piston (1) and during the decay of an arbitrary discontinuity (2).It is assumed that the internal degrees of freedom of the gas molecules are in equilibrium with the translational degrees of freedom.The author wishes to thank Yu. A. Dem'yanov for his guidance in this study.  相似文献   

18.
Chemical flooding in the petroleum industry has a larger scale of oil recovery efficiency than water flooding. On the other hand, it is far more technical, costly, and risky. Numerical reservoir simulation can be employed to conduct mechanism study, feasibility evaluation, pilot plan optimization, and performance prediction for chemical flooding to improve recovery efficiency and reduce operational costs. In this article, we study numerical simulation of chemical flooding such as alkaline, surfactant, polymer, and foam (ASP+foam) flooding. The main displacement mechanisms in this type of flooding are interfacial tension lowering, capillary desaturation, chemical synergetic effects, and mobility control. The model of chemical flooding involves such physicochemical phenomena as dispersion, diffusion, adsorption, chemical reactions, and in situ generation of surfactant from acidic crude oil. The numerical simulator is based on a sequential solution approach that solves both pressure and compositions implicitly, and is applied to three experiments, a chemical flow without mass transfer between phases, a laboratory sandstone core, and an ASP+foam displacement problem with mass transfer, and to a real oilfield. A comparison with UTCHEM is also performed. These applications and comparison indicate that this numerical simulator is practical, efficient, and accurate for simulating complex chemical flooding processes.   相似文献   

19.
An extensive literature has been devoted (see, for example, [1–3]) to the question of the existence and uniqueness of steady regimes in chemical flow reactors. In the majority of cases, exact solutions to the corresponding problems cannot be obtained because of the nonlinearity of the functions that describe the kinetics of the chemical reactions. Investigations are therefore usually made by either approximate or numerical methods. In the present paper, exact solutions are obtained to a model nonlinear boundary-value problem of the steady distribution of the concentration in a one-dimensional isothermal chemical flow reactor with longitudinal mixing, and the question of the existence and the number of steady regimes is completely investigated in a three-dimensional space of the determining parameters. The function that describes the rate of the chemical reaction is taken to be a function that simulates approximately the dependence of the rate of the autocatalytic reaction on the concentration of the initial reactant.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 177–181, May–June, 1982.  相似文献   

20.
超燃冲压发动机燃烧室工作在高马赫数工况时, 入口来流空气的总焓非常高, 自点火在高焓条件下成为维持火焰稳定的重要物理化学过程. 本文借鉴火焰面/进度变量模型的降维思路, 发展了一种基于化学动力学的自点火建表方法. 通过定义混合分数和进度变量将复杂多维的化学反应降维, 并成功将数据库方法结合到现有的大涡模拟求解器中. 经过测试和验证, 该方法初步具备对超声速自点火燃烧进行仿真描述的能力. 针对自点火诱导的超声速燃烧问题开展数值模拟, 该方法通过查表的方式有效降低了化学反应求解过程中的计算量. 在采用详细化学反应机理时能够准确地再现自点火行为和火焰结构, 并且预测的温度和重要组分分布与实验吻合较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号