首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considerable effort has been directed towards the application of percolation theory and fractal modeling to porous media. We combine these areas of research to investigate percolation in prefractal porous media. We estimated percolation thresholds in the pore space of homogeneous random 2-dimensional prefractals as a function of the fractal scale invariance ratio b and iteration level i. The percolation thresholds for these simulations were found to increase beyond the 0.5927l... porosity expected in Bernoulli (uncorrelated) percolation networks. Percolation in prefractals occurs through large pores connected by small pores. The thresholds increase with both b (a finite size effect) and i. The results allow the prediction of the onset of percolation in models of prefractal porous media and can be used to bound modeling efforts. More fundamental applications are also possible. Only a limited range of parameters has been explored empirically but extrapolations allow the critical fractal dimension to be estimated for a large combination of b and i values. Extrapolation to infinite iterations suggests that there may be a critical fractal dimension of the solid at which the pore space percolates. The extrapolated value is close to 1.89 – the well-known fractal dimension of percolation clusters in 2-dimensional Bernoulli networks.  相似文献   

2.
Effective Correlation of Apparent Gas Permeability in Tight Porous Media   总被引:3,自引:0,他引:3  
Gaseous flow regimes through tight porous media are described by rigorous application of a unified Hagen–Poiseuille-type equation. Proper implementation is accomplished based on the realization of the preferential flow paths in porous media as a bundle of tortuous capillary tubes. Improved formulations and methodology presented here are shown to provide accurate and meaningful correlations of data considering the effect of the characteristic parameters of porous media including intrinsic permeability, porosity, and tortuosity on the apparent gas permeability, rarefaction coefficient, and Klinkenberg gas slippage factor.  相似文献   

3.
A lattice Boltzmann (LB) method is developed in this article in a combination with X-ray computed tomography to simulate fluid flow at pore scale in order to calculate the anisotropic permeability of porous media. The binary 3D structures of porous materials were acquired by X-ray computed tomography at a resolution of a few microns, and the reconstructed 3D porous structures were then combined with the LB model to calculate their permeability tensor based on the simulated velocity field at pore scale. The flow is driven by pressure gradients imposed in different directions. Two porous media, one gas diffusion porous layer used in fuel cells industry and glass beads, were simulated. For both media, we investigated the relationship between their anisotropic permeability and porosity. The results indicate that the LB model is efficient to simulate pore-scale flow in porous media, and capable of giving a good estimate of the anisotropic permeability for both media. The calculated permeability is in good agreement with the measured date; the relationship between the permeability and porosity for the two media is well described by the Kozeny–Carman equation. For the gas diffusion layer, the simulated results showed that its permeability in one direction could be one order of magnitude higher than those in other two directions. The simulation was based on the single-relaxation time LB model, and we showed that by properly choosing the relaxation time, it could give similar results to those obtained using the multiple-relaxation time (MRT) LB method, but with only one third of the computational costs of MRTLB model.  相似文献   

4.
A network model is established through the techniques of image reconstruction, a thinning algorithm, and pore–throat information extraction with the aid of an industrial microfocus CT scanning system. In order to characterize actual rock pore–throat structure, the established model is modified according to the matching of experimental factors such as porosity, permeability, and the relative permeability curve. On this basis, the impacts of wetting angle, pore radius, shape factor, pore–throat ratio, and coordination number as applied to microscopic remaining oil distribution after water flooding are discussed. For a partially wetting condition, the displacement result of a water-wet pore is somewhat better than that of an oil-wet pore as a whole, and the possibility of any remaining oil is relatively low. Taking the comprehensive effects of various factors into account, a prediction method of remaining oil distribution is presented through the use of fuzzy comprehensive evaluation. It is seen that this method can predict whether there is remaining oil or not in the pore space with satisfactory accuracy, which is above 75%. This method thus provides guidance for a better understanding of the microscopic causes of the remaining oil.  相似文献   

5.
The present work attempts to identify the roles of flow and geometric variables on the scaling factor which is a necessary parameter for modeling the apparent viscosity of non-Newtonian fluid in porous media. While idealizing the porous media microstructure as arrays of circular and square cylinders, the present study uses multi-relaxation time lattice Boltzmann method to conduct pore-scale simulation of shear thinning non-Newtonian fluid flow. Variation in the size and inclusion ratio of the solid cylinders generates wide range of porous media with varying porosity and permeability. The present study also used stochastic reconstruction technique to generate realistic, random porous microstructures. For each case, pore-scale fluid flow simulation enables the calculation of equivalent viscosity based on the computed shear rate within the pores. It is observed that the scaling factor has strong dependence on porosity, permeability, tortuosity and the percolation threshold, while approaching the maximum value at the percolation threshold porosity. The present investigation quantifies and proposes meaningful correlations between the scaling factor and the macroscopic properties of the porous media.  相似文献   

6.
The permeability of a porous medium is strongly affected by its local geometry and connectivity, the size distribution of the solid inclusions, and the pores available for flow. Since direct measurements of the permeability are time consuming and require experiments that are not always possible, the reliable theoretical assessment of the permeability based on the medium structural characteristics alone is of importance. When the porosity approaches unity, the permeability?Cporosity relationships represented by the Kozeny?CCarman equations and Archie??s law predict that permeability tends to infinity and thus they yield unrealistic results if specific area of the porous media does not tend to zero. The aim of this article is the evaluation of the relationships between porosity and permeability for a set of fractal models with porosity approaching unity and a finite permeability. It is shown that the tube bundles generated by finite iterations of the corresponding geometric fractals can be used to model porous media where the permeability?Cporosity relationships are derived analytically. Several examples of the tube bundles are constructed, and the relevance of the derived permeability?Cporosity relationships is discussed in connection with the permeability measurements of highly porous metal foams reported in the literature.  相似文献   

7.
The micro flows through two-dimensional (2D) and three-dimensional (3D) granular porous media at various Knudsen numbers are studied by using the lattice Boltzmann method. For 2D cases, the correlation between the permeability, the porosity, and the Knudsen number is derived. For 2D cases, the correlation can estimate the permeability well except for the staggered square cylinder. The permeability of the porous media, which have the inclusions of different sizes, is calculated. For 3D cases, simulations for the uniform overlapping and non-uniform non-overlapping granular media are carried out. The results are compared with the correlation of previous study. The effect of rarefaction on the permeability is also discussed.  相似文献   

8.
Various ways of determining the surface porosity, the relation between the porosity and the surface porosity and the representation of the permeability in terms of the characteristics of the microstructure of the porous medium are analyzed with reference to model porous media with a periodic microstructure. It is shown that it is necessary to distinguish between the geometric (scalar) and physical (tensor) suface porosities and that the geometric surface porosity, the physical surface porosity and the porosity are different characteristics of the porous medium.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 79–85, January–February, 1995.  相似文献   

9.

The intrinsic permeability is a crucial parameter to characterise and quantify fluid flow through porous media. However, this parameter is typically uncertain, even if the geometry of the pore structure is available. In this paper, we perform a comparative study of experimental, semi-analytical and numerical methods to calculate the permeability of a regular porous structure. In particular, we use the Kozeny–Carman relation, different homogenisation approaches (3D, 2D, very thin porous media and pseudo 2D/3D), pore-scale simulations (lattice Boltzmann method, Smoothed Particle Hydrodynamics and finite-element method) and pore-scale experiments (microfluidics). A conceptual design of a periodic porous structure with regularly positioned solid cylinders is set up as a benchmark problem and treated with all considered methods. The results are discussed with regard to the individual strengths and limitations of the used methods. The applicable homogenisation approaches as well as all considered pore-scale models prove their ability to predict the permeability of the benchmark problem. The underestimation obtained by the microfluidic experiments is analysed in detail using the lattice Boltzmann method, which makes it possible to quantify the influence of experimental setup restrictions.

  相似文献   

10.
This paper presents a new water retention curve (WRC) model for the simulation of coupled thermo-hydro-mechanical processes in geological porous media. The model simultaneously considers the impact of porosity and temperature on suction, for both wetting processes and drying processes. The model is based on an idealization of porous geological media as having an isotropic and homogeneous microscopic pore structure. Suction is expressed as a function of degree of saturation, porosity, surface tension of the water–air interface, and the length of air bubble perimeter of the pores per unit area on a random 2D cross-section of the medium. The tension of water–air interface is written as a function of temperature, and the length of perimeter of the water–air interface of the pores becomes a function of porosity and degree of saturation. The final equation of the new WRC is a function of suction, effective degree of saturation, temperature, porosity, pore-gas pressure, and the rate of degree of saturation change with time for both wetting and drying processes. The model was used to fit experimental data of the FEBEX bentonite, with good agreements between measured and calculated results.  相似文献   

11.
In this study, we investigate the role of topology on the macroscopic (centimeter scale) dispersion characteristics derived from pore-network models. We consider 3D random porous networks extracted from a regular cubic lattice with coordination number distributed in accordance with real porous structures. We use physically consistent rules including ideal mixing in pore bodies, molecular diffusion, and Taylor dispersion in pore throats to simulate transport at the pore-scale level. Fundamental properties of porous networks are based on statistical distributions of basic parameters. Theoretical calculations demonstrate strong correspondence with data obtained from numerical experiments. For low coordination numbers, we observe normal transport in porous networks. Anomalous effects expressed by tailing in concentration evolution are seen for higher coordination numbers. We find that the mean network coordination number has significant influence on averaged characteristics of porous networks such as geometric and hydraulic dispersivity, while other topological properties are of less significance. We give an explicit formula that describes the decrease of geometric dispersivity with growing mean coordination number. The results demonstrate the importance of network topology for models for flow and transport in porous media.  相似文献   

12.
渗流方程自适应非均匀网格Dagan粗化算法   总被引:4,自引:0,他引:4  
在粗网格内先统计渗透率在粗网格中的概率分布,利用Dagan渗透率粗化积分方程通过渗透率概率分布计算粗化网格的等效渗透率,并由等效渗透率计算了粗化网格的压强分布,计算压强时还将渗透率自适应网格技术应用于三维渗流方程的网格粗化算法中,在渗透率或孔隙度变化异常区域自动采用精细网格,用直接解法求解渗透率或孔隙度变化异常区域的压强分布。整个求解区采用不均匀网格粗化,在流体流速高的区域采用精细网格。利用本文方法计算了三维渗流方程的压强分布,结果表明这种算法的解在渗透率或孔隙度异常区的压强分布规律非常逼近精细网格的解,在其他区域压强分布规律非常逼近粗化算法的解,计算速度比采用精细网格提高了约100倍。  相似文献   

13.
The Lagrangian smoothed particle hydrodynamics (SPH) method is employed to obtain a meso-/micro-scopic pore-scale insight into the transverse flow across the randomly aligned fibrous porous media in a 2D domain. Fluid is driven by an external body force, and a square domain with periodic boundary conditions imposed at both the streamwise and transverse flow direction is assumed. The porous matrix is established by randomly embedding a certain number of fibers in the square domain. Fibers are represented by position-fixed SPH particles, which exert viscous forces upon, and contribute to the density variations of, the nearby fluid particles. An additional repulsive force, similar in form to the 12-6 Lennard-Jones potential between atoms, is introduced to consider the no-penetrating restraint prescribed by the solid pore structure. This force is initiated from the fixed solid material particle and may act on its neighboring moving fluid particles. Fluid flow is visualized by plotting the local velocity vector field; the meandering fluid flow around the porous microstructures always follow the paths of least resistance. The simulated steady-state flow field is further used to calculate the macroscopic permeability. The dimensionless permeability (normalized by the squared characteristic dimension of the fiber cross section) exhibits an exponential dependence on the porosity within the intermediate porosity range, and the derived dimensionless permeability—porosity relation is found to have only minor dependence on either the relative arrangement condition among fibers or the fiber cross section (shape or area).  相似文献   

14.

An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research.

  相似文献   

15.
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173–179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid–solid and liquid to air–liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media.  相似文献   

16.
The flow of a viscous fluid through a porous matrix undergoing only infinitesimal deformation is described in terms of intrinsic variables, namely, the density, velocity and stress occurring in coherent elements of each material. This formulation arises naturally when macroscopic interfaces are conceptually partitioned into area fractions of fluid–fluid, fluid–solid, and solid–solid contact. Such theory has been shown to yield consistent jump conditions of mass, momentum and energy across discontinuities, either internal or an external boundary, unlike the standard mixture theory jump conditions. In the previous formulation, the matrix structure has been considered isotropic; that is, the area fractions are independent of the interface orientation. Here, that is not assumed, so in particular, the cross-section area of a continuous fluid tube depends on its orientation, which influences the directional fluxes, and in turn the directional permeability, anisotropy of the structure. The simplifications for slow viscous flow are examined, and particularly for an isotropic linearly elastic matrix in which area partitioning induces anisotropic elastic response of the mixture. A final specialization to an incompressible fluid and stationary matrix leads to potential flow, and a simple plane flow solution is presented to illustrate the effects of anisotropic permeability.  相似文献   

17.
Axisymmetric viscous, two-dimensional steady and incompressible fluid flow past a solid sphere with porous shell at moderate Reynolds numbers is investigated numerically. There are two dimensionless parameters that govern the flow in this study: the Reynolds number based on the free stream fluid velocity and the diameter of the solid core, and the ratio of the porous shell thickness to the square root of its permeability. The flow in the free fluid region outside the shell is governed by the Navier–Stokes equation. The flow within the porous annulus region of the shell is governed by a Darcy model. Using a commercially available computational fluid dynamics (CFD) package, drag coefficient and separation angle have been computed for flow past a solid sphere with a porous shell for Reynolds numbers of 50, 100, and 200, and for porous parameter in the range of 0.025–2.5. In all simulation cases, the ratio of b/a was fixed at 1.5; i.e., the ratio of outer shell radius to the inner core radius. A parametric equation relating the drag coefficient and separation point with the Reynolds number and porosity parameter were obtained by multiple linear regression. In the limit of very high permeability, the computed drag coefficient as well as the separation angle approaches that for a solid sphere of radius a, as expected. In the limit of very low permeability, the computed total drag coefficient approaches that for a solid sphere of radius b, as expected. The simulation results are presented in terms of viscous drag coefficient, separation angles and total drag coefficient. It was found that the total drag coefficient around the solid sphere as well as the separation angle are strongly governed by the porous shell permeability as well as the Reynolds number. The separation point shifts toward the rear stagnation point as the shell permeability is increased. Separation angle and drag coefficient for the special case of a solid sphere of radius ra was found to be in good agreement with previous experimental results and with the standard drag curve.  相似文献   

18.
This article presents a practical transfer function type solution to a complex problem in which variations in a number of parameters can be taken into account. A new mathematical model, which is based on mass balance transfer function of particles movement/retention in porous media, has been derived. It is used to predict permeability reduction as a function of time. The linear forms as well as the radial forms of the model are described. Although the differential equations derived are similar to the general form of diffusion–convection equations, the marked difference is the suitability of the model, for being applied for variation of parameters, such as particle concentration in the fluid, injection rate, density of solid particles, against the depth and time of invasion. This transfer function has been solved, and the results of the simulation run agree reasonably well with the experimental damage data obtained in laboratory. Owing to its simplicity, this model is more practical to describe permeability reduction for the flow of suspended particles in porous media.  相似文献   

19.
Classical Darcy’s law assumes that the intrinsic permeability of porous media is only dependent on the micro-geometrical and structural properties of the inner geometry of the medium. There are, however, numerous experimental evidences that intrinsic permeability of shaly and clayey porous material is a function of the fluid phase used in the experiments. Several pore-scale processes have been proposed to explain the observed behavior. In this study, we conduct a detailed investigation of one such mechanism, namely the electrokinetic coupling. We have developed a numerical model to simulate this process at the pore-scale, incorporating a refined model of the electrical double layer. The model is used to conduct a detailed sensitivity analysis to elucidate the relative importance of several chemical–physical parameters on the intensity of the electrokinetic coupling. We found that permeability reduction due to this mechanism is likely to occur only if the effective pore-radius is smaller than 10−6 m. We also observed that electrokinetic coupling is strongly sensitive to electrophoretic mobility, which is normally reduced in clays compared to free-water conditions. Based on these findings, we set up a suite of stochastic pore-network simulations to quantify the extent of permeability reduction. We found that only if the effective pore-radius is ranging from 5 × 10−7 m to 5 × 10−8, electrokinetic coupling can be responsible for a 5–20% reduction of the intrinsic permeability, and, therefore, this mechanism has a minor impact on situations of practical environmental or mining interest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号