首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fractal and prefractal geometric models have substantial potential for contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore–solid prefractal porous media were characterized using the lattice Boltzmann model (LBM). The percolation thresholds of the 3D prefractal porous media were inversely correlated with the fraction of micro-pore clusters and estimated as 0.36 and 0.30 for mass and pore–solid prefractal porous media, respectively. The intrinsic permeability and the dispersivity of the 3D pore–solid prefractals were larger than those of the 3D mass prefractals, presumably because of the occurrence of larger solid and pore cluster sizes in the former. The intrinsic permeability and dispersivity of both types of structure increased with increasing porosity, indicating a positive relationship between permeability and dispersivity, which is at odds with laboratory data and current theory. This discrepancy may be related to limitations of the convection dispersion equation at the relatively high porosity values employed in the present study.  相似文献   

2.
Single-phase permeability k has intensively been investigated over the past several decades by means of experiments, theories and simulations. Although the effect of surface roughness on fluid flow and permeability in single pores and fractures as well as networks of fractures was studied previously, its influence on permeability in a random mass fractal porous medium constructed of pores of different sizes remained as an open question. In this study, we, therefore, address the effect of pore–solid interface roughness on single-phase flow in random fractal porous media. For this purpose, we apply a mass fractal model to construct porous media with a priori known mass fractal dimensions \(2.579 \le D_{\mathrm{m}} \le 2.893\) characterizing both solid matrix and pore space. The pore–solid interface of the media is accordingly roughened using the Weierstrass–Mandelbrot approach and two parameters, i.e., surface fractal dimension \(D_{\mathrm{s}}\) and root-mean-square (rms) roughness height. A single-relaxation-time lattice Boltzmann method is applied to simulate single-phase permeability in the corresponding porous media. Results indicate that permeability decreases sharply with increasing \(D_{\mathrm{s}}\) from 1 to 1.1 regardless of \(D_{\mathrm{m}}\) value, while k may slightly increase or decrease, depending on \(D_{\mathrm{m}}\), as \(D_{\mathrm{s}}\) increases from 1.1 to 1.6.  相似文献   

3.
岩土介质的分形孔隙和分形粒子   总被引:26,自引:3,他引:23  
谢和平 《力学进展》1993,23(2):145-164
岩土介质是晶粒状材料,存在大量的孔隙。这些孔隙的存在严重地影响岩土介质的力学、物理和化学性能。大量的研究表明,岩土介质的孔隙几何从原子尺度到晶粒尺寸范围内均表现出分形特征。目前分形几何已被广泛应用来研究岩土的孔隙率,输运特性和渗透性等等。本文从5个方面来讨论岩土介质的分形孔隙和分形粒子:①分形几何简介;②孔隙介质的分形模型;③岩土介质的分形孔隙特性和它们的分形量测方法;④岩土的分形粒子;⑤水土保持估计中的分形毛细管模型。   相似文献   

4.
5.
Since 1942 Archie??s law is used every day to estimate, from electrical measurements, the quantity of oil present in oil fields. In this article, we perform the first experimental analysis of electric conductivity in well controlled models of porous media. We used microfluidic networks (called micromodels in the oil industry jargon), incorporating thousands of pores, with controlled wettability. Different electrode and pore geometries are considered. In all cases the evolution of the conductivity with the conductive fluid fraction (??saturation??) clearly reveals the presence of percolation thresholds, signaling that as the fraction of the conductive fluid decreases below some critical value, there are no more pathways involving only channels entirely filled with the conductive fluid that connect the electrodes. This behavior is observed in all cases, for all the network/electrode geometries and wetting properties we investigated, and is consequently likely to reflect a genuine behavior for microfluidic ??2D?? networks. The existing models??based on percolation theory or on mean field approach??reproduce correctly the structure of this behavior, but generally at a semi-quantitative level. The most successful case is obtained with the effective medium theory (EMT) model, with drainage and perpendicular electrodes. This outcome suggests that, despite the complexity of these systems, very simple models can describe correctly the physics of the system. Nonetheless, more precise modeling requires case-by-case studies. Our results are consistent with the current body of knowledge accumulated for decades on three-dimensional samples. The key point is that in 3D systems, owing to topological reasons, the threshold is extremely low in terms of water saturations. Archie??s law completely neglects the threshold effect. Nonetheless the percolation threshold should not be overlooked, and modeling should take this aspect systematically into account, as it is already done by several investigators.  相似文献   

6.
The present work attempts to identify the roles of flow and geometric variables on the scaling factor which is a necessary parameter for modeling the apparent viscosity of non-Newtonian fluid in porous media. While idealizing the porous media microstructure as arrays of circular and square cylinders, the present study uses multi-relaxation time lattice Boltzmann method to conduct pore-scale simulation of shear thinning non-Newtonian fluid flow. Variation in the size and inclusion ratio of the solid cylinders generates wide range of porous media with varying porosity and permeability. The present study also used stochastic reconstruction technique to generate realistic, random porous microstructures. For each case, pore-scale fluid flow simulation enables the calculation of equivalent viscosity based on the computed shear rate within the pores. It is observed that the scaling factor has strong dependence on porosity, permeability, tortuosity and the percolation threshold, while approaching the maximum value at the percolation threshold porosity. The present investigation quantifies and proposes meaningful correlations between the scaling factor and the macroscopic properties of the porous media.  相似文献   

7.
Invasion percolation was studied on three-dimensional regular lattices of various node numbers. A new model has been developed to obtain the pore-size distribution from capillary pressure measurements. The new model is superior to the conventional percolation model, since it takes into account the physical trapping of the wetting phase. The irreducible wetting phase saturation includes the film of the wall of the pores, the dead-end pore volume, and the main contribution by pores isolated from the outlet of the medium by the nonwetting phase. This has been related to the node number and the sample 3dimensions. Over 100 capillary pressure curves of consolidated media have been collected. Good agreement was obtained between this data set out and our invasion percolation predictions using node numbers of 6–13, as reported by Mishra and Sharma. The pore-throat size distribution function estimated by our new model is broader than from the conventional percolation and the capillary tube models.Nomenclature c constant - D pore throat diameter [m] - D max maximum pore diameter [m] - f(D) correlation function of pore throat size and pore body size - L a parameter representing the dimension of a sample - n node number - p pressure [N/m2] - S n the nonwetting phase saturation - x random number ranging from 0 to 1.0 - X a X t a /X/ t - X e a X t a X t i - X i X t i /X t a - X nw fraction of pore volume occupied by the injected phase - X t fraction of pores larger thanD - X t a total accessibility of pores larger thanD - X t i total isolation of pores larger thanD - contact angle - interfacial tension [N/m] - (D) pore throat size distribution  相似文献   

8.
An increasing number of articles are adopting Brinkman’s equation in place of Darcy’s law for describing flow in porous media. That poses the question of the respective domains of validity of both laws, as well as the question of the value of the effective viscosity μ e which is present in Brinkman’s equation. These two topics are addressed in this article, mainly by a priori estimates and by recalling existing analyses. Three main classes of porous media can be distinguished: “classical” porous media with a connected solid structure where the pore surface S p is a function of the characteristic pore size l p (such as for cylindrical pores), swarms of low concentration fixed particles where the pore surface is a function of the characteristic particle size l s , and fiber-made porous media at low solid concentration where the pore surface is a function of the fiber diameter. If Brinkman’s 3D flow equation is valid to describe the flow of a Newtonian fluid through a swarm of fixed particles or fibrous media at low concentration under very precise conditions (Lévy 1983), then we show that it cannot apply to the flow of such a fluid through classical porous media.  相似文献   

9.
We review and discuss diffusion and hydrodynamic dispersion in a heterogeneous porous medium. Two types of heterogeneities are considered. One is percolation disorder in which a fraction of the pores do not allow transport to take place at all. In the other type, the permeabilities of various regions of the pore space are fractally distributed with long-range correlations. Both systems give rise to unusual transport in which the mean square displacement <r 2(t)> of a particle grows nonlinearly with time. Depending on the heterogeneities and the mechanism of diffusion and disperison, we may havefractal transport in which <r 2> growsslower than linearly with time, orsuperdiffusive transport in which <r 2> growsfaster than linearly with time. We show that percolation models can give rise to both types of transport with scale-dependent transport coefficients such as diffusivity and dispersion coefficients, which are consistent with many experimental observations.  相似文献   

10.
In the past decades, there was considerable controversy over the Lucas–Washburn (LW) equation widely applied in capillary imbibition kinetics. Many experimental results showed that the time exponent of the LW equation is less than 0.5. Based on the tortuous capillary model and fractal geometry, the effect of tortuosity on the capillary imbibition in wetting porous media is discussed in this article. The average height growth of wetting liquid in porous media driven by capillary force following the [`(L)] s(t) ~ t1/2DT{\overline L _{\rm {s}}(t)\sim t^{1/{2D_{\rm {T}}}}} law is obtained (here D T is the fractal dimension for tortuosity, which represents the heterogeneity of flow in porous media). The LW law turns out to be the special case when the straight capillary tube (D T = 1) is assumed. The predictions by the present model for the time exponent for capillary imbibition in porous media are compared with available experimental data, and the present model can reproduce approximately the global trend of variation of the time exponent with porosity changing.  相似文献   

11.
We show how to predict flow properties for a variety of rocks using pore-scale modeling with geologically realistic networks. The pore space is represented by a topologically disordered lattice of pores connected by throats that have angular cross-sections. We successfully predict single-phase non-Newtonian rheology, and two and three-phase relative permeability for water-wet media. The pore size distribution of the network can be tuned to match capillary pressure data when a network representation of the system of interest is unavailable. The aim of this work is not simply to match experiments, but to use easily acquired data to estimate difficult to measure properties and to predict trends in data for different rock types or displacement sequences.  相似文献   

12.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.  相似文献   

13.
The percolation theory approach to static and dynamic properties of the single- and two-phase fluid flow in porous media is described. Using percolation cluster scaling laws, one can obtain functional relations between the saturation fraction of a given phase and the capillary pressure, the relative permeability, and the dispersion coefficient, in drainage and imbibition processes. In addition, the scale dependency of the transport coefficient is shown to be an outcome of the fractal nature of pore space and of the random flow pattern of the fluids or contaminant.  相似文献   

14.
15.
Influence of Microbial Growth on Hydraulic Properties of Pore Networks   总被引:2,自引:0,他引:2  
From laboratory experiments it is known that bacterial biomass is able to influence the hydraulic properties of saturated porous media, an effect called bioclogging. To interpret the observations of these experiments and to predict possible bioclogging effects on the field scale it is necessary to use transport models, which are able to include bioclogging. For these models it is necessary to know the relation between the amount of biomass and the hydraulic conductivity of the porous medium. Usually these relations were determined using bundles of parallel pore channels and do not account for interconnections between the pores in more than one dimension. The present study uses two-dimensional pore network models to study the effects of bioclogging on the pore scale. Numerical simulations were done for two different scenarios of the growth of biomass in the pores. Scenario 1 assumes microbial growth in discrete colonies clogging particular pores completely. Scenario 2 assumes microbial growth as a biofilm growing on the wall of each pore. In both scenarios the hydraulic conductivity was reduced by at least two orders of magnitude, but for the colony scenario much less biomass was needed to get a maximal clogging effect and a better agreement with previously published experimental data could be found. For both scenarios it was shown that heterogeneous pore networks could be clogged with less biomass than more homogeneous ones.  相似文献   

16.
Because fluid flow in porous media is opaque to most observational techniques simulations of the processes occurring in porous media have become important. Typical reservoir simulations treat the flow as taking place in some averaged (Darcy-scale) medium but simulations can also be carried out at the level of the network of pores and throats of the porous medium. We report the results of a pore-scale investigation of mechanisms for the alteration of mobility by foam lamella blockage in a network of these spaces and channels of porous media. Saturation and relative permeability curves are obtained using well-known power-law expressions of percolation theory and a rescaling of the percolation parameter readily permits a number of lamella-blocking mechanisms to be treated. An explanation of the shift in breakthrough gas saturation and the deformation of the shape of permeabilityvs saturation curves upon introduction of foam is provided for a variety of blocking mechanisms. The qualitatively different features seen in experimental studies of modification of gas mobility by foam can be rationalized using only two parameters which characterize the throat-size at which blockage commences and the degree of blockage.  相似文献   

17.
We present an overview of the potential applicability of fractal concepts to various aspects of transport phenomena in heterogeneous porous media. Three examples of phenomena where a fractal approach should prove illuminating are presented. In the first example we consider pore level heterogeneities as typified by pore surface roughness. We suggest that roughness may be usefully modelled by fractal curves and surfaces and also cite experimental evidence for regarding pores as fractals. In the second example we consider a fractal network approach to modelling large-scale heterogeneities. The presence of features on all length scales in simple fractal models should capture the essential role played by the presence of heterogeneities on many scales in natural reservoirs. Studies of transport phenomena in such models may yield valuable insights into the problems of macroscopic dispersion. The final example concerns dispersion in multiphase flow. Here the fractal character is attributed to the distribution of the fluid phases rather than the porous medium itself. Again studies of transport phenomena in simple fractal models should help to clarify various problems associated with the corresponding phenomena in real reservoirs.  相似文献   

18.
The classic Kozeny–Carman equation (KC) uses parameters that are empirically based or not readily measureable for predicting the permeability of unfractured porous media. Numerous published KC modifications share this disadvantage, which potentially limits the range of conditions under which the equations are applicable. It is not straightforward to formulate non-empirical general approaches due to the challenges of representing complex pore and fracture networks. Fractal-based expressions are increasingly popular in this regard, but have not yet been applied accurately and without empirical constants to estimating rock permeability. This study introduces a general non-empirical analytical KC-type expression for predicting matrix and fracture permeability during single-phase flow. It uses fractal methods to characterize geometric factors such as pore connectivity, non-uniform grain or crystal size distribution, pore arrangement, and fracture distribution in relation to pore distribution. Advances include (i) modification of the fractal approach used by Yu and coworkers for industrial applications to formulate KC-type expressions that are consistent with pore size observations on rocks. (ii) Consideration of cross-flow between pores that adhere to a fractal size distribution. (iii) Extension of the classic KC equation to fractured media absent empirical constants, a particular contribution of the study. Predictions based on the novel expression correspond well to measured matrix and fracture permeability data from natural sandstone and carbonate rocks, although the currently available dataset for fractures is sparse. The correspondence between model calculation results and matrix data is better than for existing models.  相似文献   

19.
Lovetskii  E. E.  Selyakov  V. I. 《Fluid Dynamics》1984,19(3):411-416
Models that describe the permeability of media with allowance for the structure of the pore space are considered. It is proposed to use percolation theory to describe the topology of the pore space. If the distribution of the pore channels in the medium is random, percolation theory makes it possible to determine the percolation threshold, and also to estimate the fluid conductivity of the cluster that then results. Results obtained for models of granular, porous, and cracked media are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 81–86, May–June, 1984.  相似文献   

20.
Compacted crushed rock salt is considered as potential backfill material in repositories for nuclear waste. To evaluate the sealing properties of this material knowledge concerning the nature of the pore space is of eminent interest. Here, the pore microstructures of crushed rock salt samples with different compaction states were investigated by X-ray (XCT) computed tomography and Focused Ion Beam nanotomography (FIB-nt). Based on these methods the pore microstructures were reconstructed and quantitatively analyzed with respect to porosity, connectivity and percolation properties. Regarding pores with radii \(> 4\,\upmu \hbox {m}\) , porosity differs substantially in the two analyzed samples ( \(\phi = 0.01\) and 0.10). The pore microstructures are considered isotropic in connectivity and percolation threshold. Using two finite-scaling schemes we found percolation thresholds with critical porosities \(\phi _{c} > 0.05\) . Based on statistical considerations, the millimeter size samples that can be analyzed by XCT are large enough to provide a meaningful picture of the pore geometry related to macroporosity. The samples contain also a small fraction (i.e. \(< 0.01\) ) of pores with radii \(< 1\,\upmu \hbox {m}\) , which were resolved by FIB-nt. Often these pores can be found along grain boundaries. These pores are granular shaped and are not connected to each other. Typical samples size that can be analyzed by FIB-nt is on the order of tens of microns, which turned out to be too small to provide representative geometric information unless an effort is made that involves several FIB-nt realizations per sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号