首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By tuning the polymer-filler interaction, filler size and filler loading, we use a coarse-grained model-based molecular dynamics simulation to study the polymer-filler interfacial structural (the orientations at the bond, segment and chain length scales, chain size and conformation), dynamic and stress-strain properties. Simulated results indicate that the interfacial region is composed of partial segments of different polymer chains, which is consistent with the experimental results presented by Chen et al. (Macromolecules, 2010, 43, 1076). Moreover, it is found that the interfacial region is within one single chain size (R(g)) range, irrespective of the polymer-filler interaction and the filler size, beyond which the bulk behavior appears. In the interfacial region, the orientation and dynamic behaviors are induced by the interfacial enthalpy, while the size and conformation of polymer chains near the filler are controlled by the configurational entropy. In the case of strong polymer-filler interaction (equivalent to the hydrogen bond), the innerest adsorbed polymer segments still undergo adsorption-desorption process, the transport of chain mass center in the interfacial region exhibits away from the glassy behavior, and no plastic-like yielding point appears in the stress-strain curve, which indicates that although the mobility of interfacial polymer chains is restricted, there exist no "polymer glassy layers" surrounding the filler. In addition, it is evidenced that the filler particle prefers selectively adsorbing the long polymer chains for attractive polymer-filler interaction, validating the experimental explanation of the change of the bound rubber (BR). In short, this work provides important information for further experimental and simulation studies of polymer-nanoparticle interfacial behavior.  相似文献   

2.
F. Fleck  V. Froltsov 《Soft Materials》2014,12(4):S121-S134
The effect of polymer-filler interaction on interphase dynamics between filler particles in elastomer nanocomposites and the mechanisms of rubber reinforcement by carbon black (CB) are investigated with different techniques. To determine how polymer-filler interface influences the properties of the system, CB black was modified with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride (AMIC) and mixed with different, more or less, polar elastomers. For typical diene-elastomers (EPDM, SBR), this modification leads to a decreased polymer-filler coupling strength due to the coverage of active sites at the CB surface by AMIC. This is demonstrated by evaluating the energy site distribution from static gas adsorption isotherms with the polymer analogues gas 1-Butene. However, an improvement of polymer filler coupling was determined in the case of saturated, polar rubbers (HNBR) due to attractive dipolar interactions between the polar units of the polymer and the strongly adsorbed IL at the CB surface. The different couplings affect the polymer-filler interphase dynamics between filler particles, which determines the properties of the filler network and filler-filler bonds. To describe the effect of CB surface modification quantitatively, the Dynamic Flocculation Model (DFM) has been used to calculate polymer- and filler-specific material parameters from cyclic stress-strain measurements. The fitted data deliver a coherent picture of filler-filler- and polymer-filler couplings showing a characteristic dependence on rubber polarity. A confirmation of the effect of surface modification on the strength of filler-filler bonds is obtained by nonequilibrium molecular dynamics (MD) simulations of bond rupture under tension. They also provide indications for a glassy-like behavior of strongly confined polymer layers between attractive walls.  相似文献   

3.
It is a great challenge to fully understand the microscopic dispersion and aggregation of nanoparticles (NPs) in polymer nanocomposites (PNCs) through experimental techniques. Here, coarse-grained molecular dynamics is adopted to study the dispersion and aggregation mechanisms of spherical NPs in polymer melts. By tuning the polymer-filler interaction in a wide range at both low and high filler loadings, we qualitatively sketch the phase behavior of the PNCs and structural spatial organization of the fillers mediated by the polymers, which emphasize that a homogeneous filler dispersion exists just at the intermediate interfacial interaction, in contrast with traditional viewpoints. The conclusion is in good agreement with the theoretically predicted results from Schweizer et al. Besides, to mimick the experimental coarsening process of NPs in polymer matrixes (ACS Nano 2008, 2, 1305), by grafting polymer chains on the filler surface, we obtain a good filler dispersion with a large interparticle distance. Considering the PNC system without the presence of chemical bonding between the NPs and the grafted polymer chains, the resulting good dispersion state is further used to investigate the effects of the temperature, polymer-filler interaction, and filler size on the filler aggregation process. It is found that the coarsening or aggregation process of the NPs is sensitive to the temperature, and the aggregation extent reaches the minimum in the case of moderate polymer-filler interaction, because in this case a good dispersion is obtained. That is to say, once the filler achieves a good dispersion in a polymer matrix, the properties of the PNCs will be improved significantly, because the coarsening process of the NPs will be delayed and the aging of the PNCs will be slowed.  相似文献   

4.
Common nano clay fillers have layered structure. Some nano clays like Attapulgite (AT), Sepiolite have rod like fibrous structure. Compared to layered structured clay fibrous clay AT can undergo better dispersion in polymer matrix leading to better improvement in composite properties. Chemical modifications of AT are done through amine treatment as well as by amine+silane treatment to get chemically modified fillers AAT and SAT respectively. In the present investigation, nano composites are prepared using natural rubber (NR) filled with AT, AAT and SAT. Three different loadings of each filler are used namely 2.5, 5, and 10 phr (parts per hundred of rubber). Mechanical properties like tensile strength, elongation at break increase with the increase in filler loading up to 5 phr there after these properties marginally fall when loading is increased to 10 phr due to problem of filler dispersion at higher loading. However, modulus at 300% elongation and tear strength increases with the increase in filler loading up to 10 phr. Very similar trend can also be observed for composites with chemically modified fillers, AAT and SAT. But the degree of reinforcement is higher in the case of AAT and SAT compared to that of unmodified filler AT for the same filler loading. This difference is mainly due to better polymer-filler interaction and filler dispersion in the case of chemically modified clays AAT and SAT compared to unmodified AT. Tear strength of composites increases remarkably with the addition of AT and which is further enhanced when chemically modified clays AAT and SAT are added. Dynamic-mechanical analyses of different clay composites give idea about the difference in the degree of polymer–filler interaction due to chemical treatment of filler.  相似文献   

5.
6.
为明确空间级硅橡胶的化学组成及填料添加对材料物理性能的影响, 采用填料复合方式制备硅橡胶高聚物材料, 并通过化学成分测试、 原子氧暴露试验及力学性能测试等研究其结构组成与物理性能. 经微观粒径测试得出硅橡胶中白炭黑填料粒径主要分布在8~16 μm; 经傅里叶变换红外光谱(FTIR)、 核磁共振波谱( 1H NMR和 29Si NMR)和溶胶凝胶渗透色谱(GPC)测试得出硅橡胶中含有Si—Me, Si—Ph, Si—O—Si等基团和甲基、 苯基等官能团, 其分子量分散系数为1.56, 并进一步推断出硅橡胶的分子结构及基胶与交联剂的反应类型为脱羟胺型; 经原子氧暴露试验及力学试验证实, 与未改性白炭黑填充的硅橡胶高聚物材料相比, 经硅烷改性白炭黑填充的硅橡胶高聚物材料表现出更好的抗原子氧性能, 动态力学测试后储能模量高54%, 并具有更好的应力应变响应性能. 研究结果表明, 采用表面改性处理方式可增强填料与硅橡胶基质的相互作用, 从而提高填料复合型硅橡胶高聚物材料的抗原子氧性能及综合力学性能.  相似文献   

7.
The latex blending method was chosen to prepare Kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite to improve the interaction between filler particles and rubber matrix chains. The influences of kaolinite particles size, filler contents, and flocculants types on dynamic mechanical properties and the relative reinforcement mechanism of the prepared composite were systematic investigated and proposed. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the kaolinite particles were finely dispersed into the rubber matrix and arranged in parallel orientation. The prepared nanocomposites by latex blending exhibited improved crosslinking characteristic and dynamic mechanical parameters. The KAl (SO4)2 flocculant presented obvious modification in dynamic properties and crosslinking characteristic. Both the decrease in kaolinite particle size and the increase in kaolinite content can greatly improve the storage modulus and reinforcing effect of kaolinite/ESBR nanocomposites. The dynamic reinforcement mechanism of kaolinite can be explained by filler network including a certain thickness of rubber shell on the surface of kaolinite lamellar structure and the aggregations network between kaolinite particles The optimum way to balance the dynamic properties of rubber nanocomposites at different temperatures is to reduce the surface difference between kaolinite and rubber matrix and the degree of filler-filler networking on the basis of kaolinite with nanoscale (nanometer effect).  相似文献   

8.
The shear-rate dependence of viscosity is studied for model polymer melts containing various concentrations of spherical filler particles by molecular-dynamics simulations, and the results are compared with the experimental results for calcium-carbonate-filled polypropylene. Although there are some significant differences in scale between the simulated model polymer composite and the system used in the experiments, some important qualitative similarities in shear behavior are observed. The trends in the steady-state shear viscosities of the simulated polymer-filler system agree with those seen in the experimental results; shear viscosities, zero-shear viscosities, and the rate of shear thinning are all seen to increase with filler content in both the experimental and simulated systems. We observe a significant difference between the filler volume fraction dependence of the zero-shear viscosity of the simulated system and that of the experimental system that can be attributed to a large difference in the ratio of the filler particle radius to the radius of gyration of the polymer molecules. In the simulated system, the filler particles are so small that they only have a weak effect on the viscosity of the composite at low filler volume fraction, but in the experimental system, the viscosity of the composite increases rapidly with increasing filler volume fraction. Our results indicate that there exists a value of the ratio of the filler particle radius to the polymer radius of gyration such that the zero-shear-rate viscosity of the composite becomes approximately independent of the filler particle volume fraction.  相似文献   

9.
Natural rubber vulcanizates undergo severe corrosion when exposed to nitric acid. The nature and extent of damage with increasing degree of corrosion has been assessed by studies on the fall in mechanical properties, such as tensile strength and tear strength, and examination of scanning electron microscopy photomicrographs of the fracture surfaces of tensile and tear samples, both before and after acid treatment. It has been observed that, in the case of inert fillers, which simply dilute the rubber matrix, the filled vulcanizates disintegrate, on acid treatment, more quickly than the unfilled vulcanizates but that, when the filler is reinforcing, this effect is largely overshadowed by polymer-filler interaction which restricts acid corrosion.  相似文献   

10.
二氧化硅填料与硅橡胶在热老化时的作用   总被引:2,自引:0,他引:2  
本文研究了三种表面性质不同的二氧化硅填料与二甲基硅橡胶在热老化时的作用。使混炼胶和硫化胶分别在甲苯和甲苯-氨中溶胀,测定了结合胶及溶胀度的变化。证明在老化时填料和橡胶之间有数量可观的化学键生成,并且发生氢键向化学键的转化。填料表面经过化学处理或加结构化控制剂,对它和橡胶之间的氢键结合,化学反应均有一定的抑制作用。  相似文献   

11.
The reinforcement of rubbers by nanoparticles is always accompanied with enhanced dissipation of mechanical energy upon large deformations. Methods for solving the contradiction between improving reinforcement and reducing energy dissipation for rubber nanocomposites have not been well developed. Herein carbon black(CB) filled isoprene rubber(IR)/liquid isoprene rubber(LR) blend nanocomposites with similar crosslink density(ν_e) are prepared and influence of LR on the strain softening behaviors including Payne effect under large amplitude shear deformation and Mullins effect under cyclic uniaxial deformation is investigated. The introduction of LR could improve the frequency sensitivity of loss modulus and reduce critical strain amplitude for Payne effect and loss modulus at the low amplitudes.Meanwhile, tuning ν_e and LR content allows reducing mechanical hysteresis in Mullins effect without significant impact on the mechanical performances. The investigation is illuminating for manufacturing nanocomposite vulcanizates with balanced mechanical hysteresis and reinforcement effect.  相似文献   

12.
Polyolefin composites were prepared with CaCO3 fillers of different specific surface area. The fillers were surface treated with stearic acid between 0 and 100% surface coverage. As an effect of the treatment, surface tension of the fillers and also polymer/filler interaction decreased. The relation between interfacial interaction and mechanical properties of the composites was analysed by the equation developed earlier to describe the composition dependence of the tensile yield stress. The characteristics of the interphase were calculated, its yield stress decreases and thickness increases with increasing surface coverage. Reversible work of adhesion can be successfully related to the tensile yield stress, but a more complicated correlation exists between the thickness of the interphase and the strength of the interaction than assumed earlier. Other mechanical properties also change with the surface treatment; modulus and strength decrease and extensibility increases with decreasing polymer/filler interaction.  相似文献   

13.
We present nonequilibrium dissipative particle dynamics (DPD) simulations of cross-linked elastomers containing solid filler particles at 30% volume fraction. We study systematically the effect of the morphology (dispersed or aggregated particles) and of the effective particle-particle interactions. In addition, we have experimented by replacing the standard harmonic DPD bonds with other potential functions, conceived to deal with the finite extensibility of the polymer chains and the possibility of a slow equilibrium between strongly and weakly adsorbed chains at the rubber-filler interface. The simulation results shed some light on the basic mechanisms of rubber reinforcement, including the nonlinearity and history dependence commonly known as "Payne effect" and "Mullins effect."  相似文献   

14.
This article presents a study of the polymer‐filler interfacial effects on filler dispersion and mechanical reinforcement in Polystyrene (PS)/silica nanocomposites by direct comparison of two model systems: ungrafted and PS‐grafted silica dispersed in PS matrix. The structure of nanoparticles has been investigated by combining small angle neutron scattering measurements and transmission electronic microscopic images. The mechanical properties were studied over a wide range of deformation by plate–plate rheology and uni‐axial stretching. At low silica volume fraction, the particles arrange, for both systems, in small finite size nonconnected aggregates and the materials exhibit a solid‐like behavior independent of the local polymer‐fillers interactions suggesting that reinforcement is dominated by additional long range effects. At high silica volume fraction, a continuous connected network is created leading to a fast increase of reinforcement whose amplitude is then directly dependent on the strength of the local particle–particle interactions and lower with grafting likely due to deformation of grafted polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
The radiation-induced conductivity of polymer composites based on polyisoprene rubber filled with finely divided oxides of various chemical natures was studied in the continuous irradiation mode. It was shown that the radiation conductivity is closely related to the molecular mobility of the rubber. It was found that a change in the character of thermal motion of fragments of rubber macromolecules, which is caused by interaction with the filler, could considerably enhance the radiation-induced conductivity of a polymer composite.  相似文献   

16.
The deformed structure of silica-filled elastomers under uniaxial strain has been investigated using a combination of both small angle x-ray scattering and small angle neutron scattering methods. Using an extraction procedure and taking into account the two-phase nature of these polymer-based composites, the single chain scattering behavior as well as filler properties could be obtained uniquely on identical samples. For the first time the deformation of the rubbery matrix on the length scale of the network chain in a filled rubber could be determined and therewith the importance of matrix overstrain for the mechanical properties was estimated. Additionally, the determination of filler deformation and filler destruction presents microscopic details of the mechanisms of filler networking and the stress-softening Mullins effect.  相似文献   

17.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

18.
The scanning electron microscopy method in combination with the selective etching technique for polymer blends have been used to evaluate interfacial interaction in natural rubber and low density polyethylene blends. The morphology of the polymer blends, studied under externally applied strain, has been investigated to understand the role of interface adhesion between natural rubber and polyethylene phases, for two separate crosslinking systems, i.e. sulphur and peroxide.

Externally induced strain which facilitates phase separation in sulphur cured blends by initiating cracks at the interface; peroxide curing prevents separating out of the polyethylene phase from the natural rubber matrix. In the latter case, induced stress is distributed predominantly by developing fine flaw paths in the rubber matrix.

The method which has been developed for natural rubber and polyethylene blend systems may be used to evaluate the degree of interfacial adhesion between the dispersed phase and the dispersion medium for other kinds of polymer-polymer, polymer-filler as well as polymer-fibre composites.  相似文献   


19.
纳米二氧化硅与辐射硫化三元乙丙橡胶相互作用的研究   总被引:3,自引:0,他引:3  
用Kraus方程、IR光谱和交联密度等手段研究了纳米二氧化硅与辐射硫化三元乙丙橡胶间的相互作用。Kraus曲线显示纳米二氧化硅与辐射硫化三元乙丙橡胶之间存在着相互作用;红外光谱的结果表明纳米二氧化硅与橡胶分子发生了化学反应,生成了化学键。用平衡溶胀法测定了纳米二氧化硅填充辐射硫化三元乙丙橡胶的交联密度,发现当填料含量低于40phr时,填充辐射胶的总交联密度随填料用量增加而提高;继续增加填料含量,总交联密度不再继续提高;物理交联密度也呈现出相同的变化趋势。同时,纳米二氧化硅与辐射硫化三元乙丙橡胶的相互作用增强,使得硫化胶的力学性能随着相互作用的加强而得到改善。  相似文献   

20.
Studies of the relationship between interfacial structure and mechanical properties in multicomponent materials are reviewed in this article. The following categories are considered for role of the interface in multicomponent systems: Interpenetrating polymer network(IPN), catalytic effect of silane coupling agent, morphological differences of filler surface, particle-particle interaction and particle size of the filler. The interfacial role in terms of the reinforcement mechanism of the composite and the behavior in the melt state is also discussed in the multicomponent system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号