首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of ascorbic acid with ferrihydrite nanoparticles with and without adsorbed phospholipid has been investigated with atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), density functional theory (DFT) cluster calculations, and batch geochemical methods. Both batch geochemical rate measurements and in situ AFM showed that ferrihydrite particles dissolved in the presence of ascorbic acid over a period of hours. The area-normalized dissolution rate derived from AFM measurements of isolated ferrihydrite particles was relatively constant over the period of dissolution and was faster than the dissolution rate derived from batch reaction methods. Results from ATR-FTIR interpreted in view of theoretical calculations suggested that exposure of ferrihydrite to ascorbic acid led to an adsorbed monodentate ascorbate surface complex. Ferrihydrite dissolution was suppressed if particles were exposed to an organic lipid prior to or during exposure to ascorbic acid. AFM analysis of the lipid layer showed that its thickness was close to 7 nm, the expected value for lipid assembled into a bilayer structure.  相似文献   

2.
Batch experiments were conducted to study the adsorption behavior of cadmium ion onto the synthetic ferrihydrite. The adsorbent was characterized using X-ray diffraction and N2 adsorption–desorption measurements. The effects of pH value and the major seawater anions (nitrate, carbonate, chloride and sulphate) at their natural concentrations on the adsorption of cadmium ion were investigated. The results showed that the adsorption of cadmium ion was highly pH-dependent and suppressed in the presence of chloride, sulphate and nitrate, while carbonate was found to enhance the adsorption of cadmium ion over the examined range of 4.0–7.5. The maximum percentage of cadmium ion adsorbed can reach 89.96 % at pH 7.5. It is proposed that the competition for binding sites played a key role in the reduction of cadmium ion adsorption by nitrate, chloride and sulphate. X-ray diffraction spectroscopic data for cadmium adsorbed on ferrihydrite showed that CdCO3(s) was formed on ferrihydrite; the formation of CdCO3 precipitation or surface precipitation in carbonate system may be the reason for the increase of cadmium adsorption.  相似文献   

3.
The adsorption of Suwannee River fulvic acid (SRFA) and Pahokee peat humic acid (PPHA) at the boehmite (gamma-AlOOH)/water interface and the impact of SRFA on boehmite dissolution have been examined over a wide range of solution pH conditions (pH 2-12), SRFA surface coverages (Gamma(SRFA), total SRFA binding site concentration normalized by the boehmite surface area) of 0.0-5.33 micromol m(-2), and PPHA surface coverages (Gamma(PPHA), PPHA binding site concentration normalized by boehmite surface area) of 0.0-4.0 micromol m(-2), using macroscopic adsorption and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. At relatively high SRFA surface coverages (Gamma(SRFA) = 5.33 micromol m(-2)), in situ ATR-FTIR spectral features of adsorbed SRFA are very similar to those measured for SRFA in solution at approximately 1-3 pH units higher. At sub-monolayer surface coverages (Gamma(SRFA) = 1.20 and 2.20 micromol m(-2)), several new peaks and enhancements of the intensities of a number of existing peaks are observed. The latter spectral changes arise from several nonorganic extrinsic species (i.e., adsorbed carbonate and water, for alkaline solution conditions), partially protonated SRFA carboxyl functional groups (near-neutral pH conditions), and small quantities of inner-spherically adsorbed SRFA carboxyl groups and/or Al(III)-SRFA complexes (for acidic conditions). The spectra of PPHA adsorbed at boehmite/water interfaces also showed changes generally consistent with our observations for SRFA sorbed on boehmite. These observations confirm that SRFA and PPHA are predominantly adsorbed at the boehmite/water interface in an outer-sphere fashion, with minor inner-sphere adsorption complexes being formed only under quite acidic conditions. They also suggest that the positively charged boehmite/water interface stabilizes SRFA and PPHA carboxyl functional groups against protonation at lower pH. Measurements of the concentration of dissolved Al(III) ions in the absence and presence of SRFA showed that the boehmite dissolution process is clearly inhibited by the adsorption of SRFA, which is consistent with previous observations that outer-spherically adsorbed organic anions inhibit Al-(oxyhydr)oxide dissolution.  相似文献   

4.
马苗锐  杨丽娟  刘倩  刘辉  魏雨 《物理化学学报》2008,24(12):2282-2286
以Fe(III)盐为原料、NaOH为沉淀剂、采用三种方法调控制备了ferrihydrite, 借助X射线衍射(XRD)、红外光谱(IR)、差热分析(DTA)及其在稀盐酸中的溶解速率等手段对其结构进行了表征, 探讨了ferrihydrite的形成环境对其亚微观结构及其反应活性的影响. 结果表明, 不同方法制备的ferrihydrite的亚微观结构不同, 恒pH条件下制备的ferrihydrite结构与α-Fe2O3结构最为相似, 更易转化为α-Fe2O3粒子.  相似文献   

5.
This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a nonlinear optical material L-histidine oxalate. Due to the lack of sufficiently precise information on geometric structure in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine oxalate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro symmetric space group P2(1)2(1)2(1) of orthorhombic system. The FT-IR and Raman spectra of L-histidine oxalate were recorded and analyzed. The vibrational wave numbers were examined theoretical with the aid of Gaussian98 package of programs using the DFT//B3LYP/6-31G(d) level of theory. The data obtained from vibrational wave number calculations are used to assign vibrational bands obtained in IR and Raman spectroscopy of the studied compound. The geometrical parameters of the title compound are in agreement with the values of similar structures. To investigate microscopic second order non-linear optical NLO behaviour of the examined complex, the electric dipole μ(tot), the polarizability α(tot) and the hyperpolarizability β(tot) were computed using DFT//B3LYP/6-31G(d) method. According to our calculation, the title compound exhibits non-zero β(tot) value revealing microscopic second order NLO behaviour.  相似文献   

6.
The dissolution of a technical, nanodispersed gamma-alumina in water was studied at 25 degrees C in the pH range 3.0 < or = pH < or = 11.0. The obtained kinetic dissolution curves showed a distinct pH dependency, whereas only for pH > or = 4.5 the typical behavior of nanodispersed materials could be observed. X-ray powder diffraction analysis and nitrogen adsorption, as well as IR and UV-Raman spectroscopy, were used to characterize the solid material collected during and at the end of each dissolution experiment. As a result the formation of a new aluminum phase-bayerite-could be proven. The analysis of the equilibrium concentration enabled us to determine the solubility constant of the corresponding phase assuming a pH-dependent species distribution. The rate constants of the dissolution process were evaluated using the model of Gibbs free energy of cluster formation, which considers the size effect, among other things. As a result, we could show that the observed maxima in the concentration profiles are due to a size effect of the starting material having a primary particle radius of 10.1 nm.  相似文献   

7.
First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.  相似文献   

8.
A polytyramine-copper oxalate nanocomposite modified copper(PTCOxNMC) electrode prepared by electropolymerization was examined for electrocatalytic activity towards the oxidation of methanol in alkaline solution using cyclic voltammetry and impedance spectroscopy. The prepared PTCOxNMC electrode showed a significantly high response for adsorbed methanol oxidation. The effects of various parameters such as potential scan rate and methanol concentration on the electrocatalytic oxidation at the surface of the PTCOxNMC electrode were investigated. Spectrometry techniques such as Fourier transform infrared spectroscopy and scanning electron microscopy were used to determine the surface physical characteristics of the modified electrode and revealed that the polytyramine-copper oxalate nanocomposite particles were highly dispersed on the surface of the copper electrode with a narrow size up to 40 nm. The very high current density obtained for the catalytic oxidation may have resulted from the high electrode surface area caused by modification with the poly-tyramine-copper oxalate nanocomposite.  相似文献   

9.
The competitive adsorption between oxalate and malonate at the water-goethite interface was studied as a function of pH and total ligand concentrations by means of quantitative adsorption measurements and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The results obtained show that ATR-FTIR spectroscopy resolves the individual spectroscopic features of oxalate and malonate when adsorbed simultaneously at the water-goethite interface. The characteristic peaks of all four types of predominating surface complexes existing in the single ligand systems were identified, namely one inner sphere and one outer sphere surface complex for each ligand. The quantitative adsorption data showed that oxalate partially out-competes malonate at the water-goethite interface. Evaluation of the peak area variations as a function of pH indicated that the stronger oxalate adsorption can be ascribed to the more stable inner sphere surface complex of oxalate, which in turn is related to the oxalate five-member chelate ring structure yielding a more stable complex compared to the six-member ring of malonate.  相似文献   

10.
The adsorption and oxidation of oxalic acid at gold electrodes were studied by in-situ infrared spectroscopy. External reflection experiments carried out with gold single-crystal electrodes were combined with internal reflection (ATR-SEIRAS) experiments with gold thin-film electrodes. These gold thin films, with a typical thickness of ca. 35 nm, were deposited on silicon substrates by argon sputtering. As previously reported for evaporated gold films, the voltammetric curves obtained in sulfuric acid solutions after electrochemical annealing show typical features related to the presence of wide bidimensional (111) domains with long-range order. The in-situ infrared data collected for solutions of pH 1 confirmed the potential-dependent adsorption of either oxalate (Au(100)) or a mixture of bioxalate and oxalate (Au(111), Au(110), and gold thin films) anions in a bidentate configuration. The better signal-to-noise ratio associated with the SEIRA effect in the case of the gold thin-film electrodes allows the observation of the carbonyl band for adsorbed bioxalate that was not detected in the external reflection experiments. Besides, additional bands are observed between 2000 and 3000 cm(-)(1) that can be tentatively related to the formation of hydrogen bonds between neighboring bioxalate anions. The intensities of these bands decrease with increasing solution pH values, disappearing for pH 3 solutions in which adsorbed oxalate anions are the predominant species. The analysis of the intensities of the nu(s)(O-C-O) and nu(C-OH) + delta(C-O-H) bands for adsorbed oxalate and bioxalate, respectively, suggests that the pK(a) for the surface equilibrium between these species is significantly lower than that for the solution equilibrium.  相似文献   

11.
The sorption reactions of uranium(VI) at the ferrihydrite(Fh)-water interface were investigated in the absence and presence of atmospherically derived CO(2) by time-resolved in situ vibrational spectroscopy. The spectra clearly show that a single uranyl surface species, most probably a mononuclear bidentate surface complex, is formed irrespective of the presence of atmospherically derived CO(2). The character of the carbonate surface species correlates with the presence of the actinyl ions and changes from a monodentate to a bidentate binding upon sorption of U(VI). From the in situ sorption experiments under mildly acid conditions, the formation of a ternary surface complex is derived where the carbonate ligands coordinate bidentately to the uranyl moiety (≡UO(2)(O(2)CO)(x)). Furthermore, the release reaction of the carbonate ligands from the ternary surface complex is found to be considerably retarded compared to those from the pristine surface suggesting a tighter bonding of the carbonate ions in the ternary complex. Simultaneous sorption of U(VI) and atmospherically derived carbonate onto pristine Fh shows formation of binary monodentate carbonate surface complexes prior to the formation of the ternary complexes.  相似文献   

12.
The mechanism of dithiophosphinate (DTPI) adsorption on chalcopyrite was investigated by diffuse reflectance Fourier transformation (DRIFT) spectroscopy and by cyclic voltammetry (CV) at various pHs. CV experiments showed that the redox reactions occurred at a certain degree of irreversibility on the chalcopyrite surface in the absence of a collector due to preferential dissolution of iron ions in slightly acid solution and irreversible surface coverage by iron oxyhydroxides in neutral and alkaline solutions. In the presence of DTPI, CV experiments failed to identify the type of the adsorbed DTPI species and electrochemical processes occurring on chalcopyrite due to formation of an electrochemically passive surface layer preventing electron transfer. However, DRIFT spectroscopy tests showed this passive layer to be mainly CuDTPI + (DTPI)2. Both CV and DRIFT spectroscopy established that the activity of collector species decreased with increasing pH due to formation of stable hydrophilic metal oxyhydroxides on the chalcopyrite surface.  相似文献   

13.
Sum frequency vibrational spectroscopy was used to study adsorption of leucine molecules at air-water interface from solutions with different concentrations and pH values. The surface density and the orientation of the isopropyl head group of the adsorbed leucine molecules could be deduced from the measurements. It was found that the orientation depends on the surface density, but only weakly on bulk pH value at the saturated surface density. The vibrational spectra of the interfacial water molecules appeared to be strongly affected by the charge state of the adsorbed leucine molecules. Enhancement and inversion of polar orientation of interfacial water molecules by surface charges or field controllable by the bulk pH value were observed.  相似文献   

14.
For isolated fluoroform (F(3)CH) molecules adsorbed on a hexagonal ice (0001) surface the properties of blue- and red-shifting hydrogen bonds were studied using static density functional theory (DFT) calculations and Car-Parrinello molecular dynamics (CP-MD) simulations. A systematic search by starting from many initial configurations was performed to determine the lowest-energy structures of F(3)CH on the ice surface, and for the optimized geometries the vibrational frequencies were calculated. The local minima structures are analyzed in terms of their coordination to the surface, with special focus on identifying blue-shifting hydrogen bonds via their spectroscopic signature of an increased frequency of the C-H fundamental stretching vibration. Subsequently, by CP-MD simulations the stability of the lowest-energy configurations at finite temperatures was verified and possible transformation pathways connecting the local minima structures were explored.  相似文献   

15.
Molecular structures and vibrational spectra of the CO species adsorbed on the Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2 have been investigated by means of density functional theory (DFT) calculation and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The geometrical structures and vibrational frequencies were obtained at the MPW1PW91/SDD level. Theoretical calculation shows that the calculated IR spectra were in good agreement with the experimental results. The calculated results clarify the assignment of the adsorbed CO species on the surface of Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2.  相似文献   

16.
The adsorption of citric acid onto goethite, kaolinite, and illite was measured as a function of pH (adsorption edges) and concentration (adsorption isotherms) at 25 degrees C. The greatest adsorption was onto goethite and the least onto illite. Adsorption onto goethite was at a maximum below pH 5 and decreased as the pH was increased to pH 9. For kaolinite, maximum adsorption occurred between pH 4.5 and pH 7, decreasing below and above this pH region, while for illite maximum adsorption occurred between about pH 5 and pH 7, decreasing at both lower and higher pH. ATR-FTIR spectra of citrate adsorbed to goethite at pH 4.6, pH 7.0, and pH 8.8 were compared with those of citrate solutions between pH 3.5 and pH 9.1. While the spectra of adsorbed citrate resembled those of the fully deprotonated solution species, there were significant differences. In particular the C[bond]O symmetric stretching band of the adsorbed species at pH 4.6 and 7.0 changed shape and was shifted to higher wave number. Further spectral analysis suggested that citrate adsorbed as an inner-sphere complex at pH 4.6 and pH 7.0 with coordination to the surface most probably via one or more carboxyl groups. At pH 8.8 the intensity of the adsorbed bands was much smaller but their shape was similar to those from the deprotonated citrate solution species, suggesting outer-sphere adsorption. Insufficient citric acid adsorbed onto illite or kaolinite to provide spectroscopic information about the mode of adsorption onto these minerals. Data from adsorption experiments, and from potentiometric titrations of suspensions of the minerals in the presence of citric acid, were fitted by extended constant-capacitance surface complexation models. On the goethite surface a monodentate inner-sphere complex dominated adsorption below pH 7.9, with a bidentate outer-sphere complex required at higher pH values. On kaolinite, citric acid adsorption was modeled with a bidentate outer-sphere complex at low pH and a monodentate outer-sphere complex at higher pH. There is evidence of dissolution of kaolinite in the presence of citric acid. For illite two bidentate outer-sphere complexes provided a good fit to all data.  相似文献   

17.
The photoassisted mineralization, i.e., conversion to CO2 and water, of malonic acid over P25 TiO2 was investigated by in situ attenuated total reflection infrared (ATR-IR) spectroscopy in a small volume flow-through cell. Reassignment of the vibrational bands of adsorbed malonic acid, assisted by deuterium labeling, reveals two dissimilar carboxylate groups within the molecule. This indicates adsorption via both carboxylate groups, one in a bridging or bidentate and the other in monodentate coordination. During irradiation the coverage of malonic acid strongly decreases, and oxalate is observed on the surface in at least two different adsorption modes. The major oxalate species observed during irradiation is characterized by monodentate coordination of both carboxylate groups. In the dark, however, part of these species adopts another adsorption mode, possibly interacting only with one carboxylate group. During band gap illumination a large fraction of the surface is not covered by acid. Oxalate is a major intermediate in the mineralization of malonic acid. However, the observed transient kinetics of adsorbed malonic and oxalic acid indicates additional pathways not involving oxalate. The rate constant for oxalate decomposition is slightly larger than the one for oxalate formation from malonic acid. As the oxalate is desorbing slowly from the surface its concentration in the liquid phase is small, despite the fact that it is a major intermediate in the mineralization of malonic acid.  相似文献   

18.
Ruthenium oxides (RuO(2)·1·10H(2)O and RuO(2)) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation state. Surface charging experiments indicate a large quantity of reactive functional groups for both materials and a decrease in the acidity of the surface functional groups with crystallization of the hydrous oxide. Dissolution studies conducted in acidic and basic pH environments indicate Ru-oxides are insoluble in 0.1 M HCl and slightly soluble in 0.1 M NaOH. Oxalate and ascorbate (5 mM) promoted dissolution of RuO(2)·1·10H(2)O demonstrated an increase in dissolution rates with decreasing pH and increasing ligand surface coverage. XPS analysis of the RuO(2)·1·10H(2)O surface after ligand promoted dissolution revealed the reduction of Ru(IV) to Ru(III) indicating that both ascorbate and oxalate reductively dissolve RuO(2)·1·10H(2)O. Dissolution experiments with RuO(2) resulted in dissolution only for 5 mM oxalate at pH 3. Dissolution rates calculated for RuO(2)·1·10H(2)O and RuO(2) are compared with previously published dissolution rates for iron oxides, demonstrating an order of magnitude decrease in the oxalate and ascorbate promoted dissolution.  相似文献   

19.
The first high-resolution CH stretch vibrations in submonolayers of molecules adsorbed on a single-crystalline surface have been obtained by infrared spectroscopy. Investigation of symmetric and asymmetric vibrational modes of CH3O adsorbed on Cu(l00) shows that the molecules are tilted on the surface, that nearest-neighbour interactions are important and that the intrinsic peak widths are large.  相似文献   

20.
Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号