首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5‐Coordinated methoxybenzylidene complexes M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3)2 (Ar=2,6‐iPr2C6H3; tBuF3=CMe2(CF3)) of Mo ( 1mMo ) and W ( 1mW ) were synthesized by cross‐metathesis from the corresponding neophylidene/neopentylidene precursors and o‐methoxystyrene. 1mMo and 1mW were grafted onto the surface of silica partially dehydroxylated at 700 °C to give well‐defined silica‐supported alkylidenes (≡SiO)M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3) (M=Mo ( 1Mo ), W ( 1W )). Supported methoxybenzylidene complexes were tested in metathesis of cis‐4‐nonene, 1‐nonene, and ethyl oleate, and compared to their molecular precursors and supported classical analogs (≡SiO)M(=NAr)(=CHCMe2R)(OtBuF3) (M=Mo, R=Ph ( 2Mo ), M=W, R=Me ( 2W )). Both grafted complexes 1Mo and 1W show significantly better performance as compared to their molecular precursors 1mMo and 1mW but are less efficient than the classical 4‐coordinated alkylidenes 2Mo and 2W . Noteworthy, both 1Mo and 1W can reach equilibrium conversion in metathesis of cis‐4‐nonene at catalyst loadings as low as 50 ppm.  相似文献   

2.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIV. Formation and Structure of [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2] [cp′Mo(CO)2]2 (cp′ = C5H4tBu) reacts with tBu2P–P=P(Me)tBu2 to yield the compound [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2], which crystallizes in the space group P212121 with a = 1202.42(7), b = 1552.48(8), and c = 1765.3(1) pm.  相似文献   

3.
The dimeric tetraorganodistannoxane [n‐Bu2(F)SnOSn(F)t‐Bu2]2 ( 1 ) was prepared by the reaction of (t‐Bu2SnO)3 with n‐Bu2SnF2 and characterized in solution by multinuclear NMR spectroscopy and ESI MS spectrometry and in the solid state by 119Sn MAS NMR spectroscopy and single crystal X‐ray diffraction.  相似文献   

4.
Syntheses and Properties of Di‐tert‐butylphosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 The phosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 are accessible from reaction of LiPtBu2 with ZnI2, HgCl2 and CuCl, respectively. [M(PtBu2)2]2 (M = Zn, Hg) are dimers in the solid state. X‐ray structural analyses of these phosphides reveal that [M(PtBu2)2]2 (M = Zn, Hg) contain four‐membered M2P2‐rings whereas [Cu(PtBu2)]4 features a planar eight‐membered Cu4P4‐ring. Degradation reaction of LiPtBu2(BH3) in the presence of HgCl2 results in the dimeric phosphanylborane BH3 adduct [tBu2PBH2(BH3)]2. X‐ray quality crystals of [tBu2PBH2(BH3)]2 (monoclinic, P21/n) are obtained from a pentane solution at 6 °C. According to the result of the X‐ray structural analysis, the O2‐oxidation product of [Hg(PtBu2)2]2, [Hg{OP(O)(tBu)OPtBu2}(μ‐OPtBu)]2, features in the solid state structure two five‐membered HgP2O2‐rings and a six‐membered Hg2P2O2‐ring. Herein the spiro‐connected Hg atoms are member of one five‐membered and of the six‐membered ring.  相似文献   

5.
Single Crystals of the Cerium(III) Borosilicate Ce3[BSiO6][SiO4] Colorless, lath‐shaped single crystals of Ce3[BSiO6]‐ [SiO4] (orthorhombic, Pbca; a = 990.07(6), b = 720.36(4), c = 2329.2(2) pm, Z = 8) were obtained in attempts to synthesize fluoride borates with trivalent cerium in evacuated silica tubes by reaction of educt mixtures of elemental cerium, cerium dioxide, cerium trifluoride, and boron sesquioxide (Ce, CeO2, CeF3, B2O3; molar ratio 3 : 1 : 3 : 3) in fluxing CsCl (700 °C, 7 d) with the glass wall. The crystal structure contains eight‐ (Ce1) and ninefold coordinated Ce3+ cations (Ce2 and Ce3) surrounded by oxygen atoms. Charge balance is achieved by both discrete borosilicate ([BSiO6]5– ≡ [O2BOSiO3]5–) and ortho‐silicate anions ([SiO4]4–). The former consists of a [BO3] triangle linked to a [SiO4] tetrahedron by a single vertex. The anions form layers in [001] direction alternatingly built up from [BSiO6]5– and [SiO4]4– groups while Ce3+ cations are located in between.  相似文献   

6.
tBuC≡P as a Synthon for the Formation of a Dinuclear Rhenium Complex with a Bridging and Chiral Phosphinidene Oxide Ligand The one‐pot reaction of [{Cp*(OC)2Re}2] (Re = Re) ( 3 ) with tBuC≡P ( 4 ) and the subsequent oxidation with (Me3Si)2O2 ( 5 ) affords [Re(CO)2C5Me4CH2{μ‐HC(But)P(O)}Re(CO)2Cp*] ( 6 ), a dinuclear rhenium complex with a bridging and chiral phosphinidene oxide ligand. Its structure was confirmed by an X‐ray crystal structure determination.  相似文献   

7.
A dicationic platinum(II) terpyridyl complex, [(tBu3tpy)Pt(OXD)Pt(tBu3tpy)](PF6)2 (tBu3tpy=4,4′,4“‐tri‐tert‐butyl‐2,2′:6′,2”‐terpyridyl, OXD=2,5‐bis(4‐ethynylphenyl)[1,3,4]oxadiazole) formed phosphorescent organogels in acetonitrile or in a mixture of acetonitrile and alcohol. The structure and properties of these emissive gels were analyzed by polarizing optical and confocal laser scanning microscopy, and by variable‐temperature 1H NMR, UV/Vis, and emission spectroscopy. Dry gels were studied by scanning electron microscopy, powder X‐ray diffraction (PXRD), and small‐angle X‐ray scattering (SAXS). SEM images of the dry gel revealed a network of interwoven nanofibers (diameter 12–60 nm, length>5 μm). Intermolecular π–π interactions between the [(tBu3tpy)PtC≡C] moieties could be deduced from the variable 1H NMR spectra. The PXRD and SAXS data showed that the assembly of the gelator could be represented by a rectangular 2D lattice of 68 Å × 14 Å. The ability of the complex to gelate a number of organic solvents is most likely due to intermolecular π–π interactions between the [(tBu3tpy)PtC≡C] moieties.  相似文献   

8.
Nanomagnetic bisethylferrocene‐containing ionic liquid supported on silica‐coated iron oxide (Fe3O4@SiO2@Im‐bisethylFc [HC2O4]) as a novel catalyst was designed and synthesized. The described catalyst was recycled and used without change in the time and efficiency of the condensation reaction. The Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscopy images, X‐ray diffraction patterns, energy‐dispersive X‐ray spectroscopy, transmission electron microscope and vibrating‐sample magnetometer results confirmed the formation of Fe3O4@SiO2@Im‐bisethylFc [HC2O4] magnetic nanoparticle. The novel bis‐coumarin derivatives were identified by 1H‐NMR, 13C‐NMR, FT‐IR and CHNS analysis.  相似文献   

9.
Air‐ and moisture‐stable heterobimetallic tetrahedral clusters [Cp(CO)2MSiR]2 (M=Mo or W; R=SitBu3) were isolated from the reaction of N‐heterocyclic carbene (NHC) stabilized silyl(silylidene) metal complexes Cp(CO)2M=Si(SitBu3)NHC with a mild Lewis acid (BPh3). Alternatively, treatment of the NHC‐stabilized silylidene complex Cp(CO)2W=Si(SitBu3)NHC with stronger Lewis acids such as AlCl3 or B(C6F5)3 resulted in the reversible coordination of the Lewis acid to one of the carbonyl ligands. Computational investigations revealed that the dimerization of the intermediate metal silylidyne (M≡Si) complex to a tetrahedral cluster instead of a planar four‐membered ring is due to steric bulk.  相似文献   

10.
In the oxidative process of the supersilanide anion [SitBu3]?, radical species are generated. The continuous wave (cw)‐EPR spectrum of the reaction solution of Na[SitBu3] with O2 revealed a signal, which could be characterized as disupersilylperoxo radical anion [tBu3SiOOSitBu3]?? affected by sodium ions though ion‐pair formation. A mechanism is suggested for the oxidative process of supersilanide, which in a further step can be helpful in a better understanding of the oxidation process of isoelectronic phosphanes.  相似文献   

11.
The half‐open rare‐earth‐metal aluminabenzene complexes [(1‐Me‐3,5‐tBu2‐C5H3Al)(μ‐Me)Ln(2,4‐dtbp)] (Ln=Y, Lu) are accessible via a salt metathesis reaction employing Ln(AlMe4)3 and K(2,4‐dtbp). Treatment of the yttrium complex with B(C6F5)3 and tBuCCH gives access to the pentafluorophenylalane complex [{1‐(C6F5)‐3,5‐tBu2‐C5H3Al}{μ‐C6F5}Y{2,4‐dtbp}] and the mixed vinyl acetylide complex [(2,4‐dtbp)Y(μ‐η13‐2,4‐tBu2‐C5H4)(μ‐CCtBu)AlMe2], respectively.  相似文献   

12.
The cationic organotin cluster [t‐Bu2Sn(OH)(H2O)]22+2OTf? is easy to prepare and stable in air. The catalytic activity of [t‐Bu2Sn(OH)(H2O)]22+2OTf? as a neutral organotin Lewis acid catalyst is probed through the one‐pot three‐component syntheses of 5‐substituted 1H‐tetrazoles from aldehydes, hydroxylamine hydrochloride and sodium azide, and of 2,4,6‐triarylpyridines from aromatic aldehydes, substituted acetophenones and ammonium acetate. The reactions proceed well in the presence of 1 mol% of [t‐Bu2Sn(OH)(H2O)]22+2OTf? in water and provide the corresponding 5‐substituted 1H‐tetrazoles and 2,4,6‐triarylpyridines in good to excellent yields. The method reported has several advantages such as the catalyst being neutral, low catalyst loading and use of water as a green solvent.  相似文献   

13.
The metalation of HP(SiMe3)2 with Y[CH(SiMe3)2]3 gives the homoleptic {Y[P(SiMe3)2]3}2 (1) which crystallizes from toluene in the monoclinic space group P21/c. The yttrium atoms are in a distorted tetrahedral environment with Y‐P bond lengths of 267.7 and 284.8 pm to the terminal and bridging substituents, respectively. The metathesis reaction of [1, 3‐(Me3Si)2C5H3]2YCl with KPSitBu3 yields (tetrahydrofuran‐O)‐1, 1', 3, 3'‐tetrakis(trimethylsilyl)yttrocene‐tri(tert‐butyl)silylphosphanide ( 2 ). The molecular structure of 2 in solution was deduced by NMR spectroscopy and X‐ray crystallography. The coupling constants 1J(Y, P) and 1J(P, H) show values of 144.0 Hz and 201.0 Hz, respectively.  相似文献   

14.
The synthesis of a unique series of heteromultinuclear transition metal compounds is reported. Complexes 1‐I‐3‐Br‐5‐(FcC≡C)‐C6H3 ( 4 ), 1‐Br‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 6 ), 1,3‐(bpy‐C≡C)2‐5‐(FcC≡C)‐C6H3 ( 7 ), 1‐(XC≡C)‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 8 , X = SiMe3; 9 , X = H), 1‐(HC≡C)‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 11 ), 1‐[(Ph3P)AuC≡C]‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 13 ), 1‐[(Ph3P)AuC≡C]‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 14 ), [1‐[(Ph3PAuC≡C]‐3‐[{[Ti](C≡CSiMe3)2}Cu(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3]PF6 ( 16 ), and [1,3‐[(tBu2bpy)2Ru(bpy‐C≡C)]2‐5‐(FcC≡C)‐C6H3](PF6)4 ( 18 ) (Fc = (η5‐C5H4)(η5‐C5H5)Fe, bpy = 2,2′‐bipyridiyl‐5‐yl, [Ti] = (η5‐C5H4SiMe3)2Ti) were prepared by using consecutive synthesis methodologies including metathesis, desilylation, dehydrohalogenation, and carbon–carbon cross‐coupling reactions. In these complexes the corresponding metal atoms are connected by carbon‐rich bridging units comprising 1,3‐diethynyl‐, 1,3,5‐triethynylbenzene and bipyridyl units. They were characterized by elemental analysis, IR and NMR spectroscopy, and partly by ESI‐TOF mass spectrometry., The structures of 4 and 11 in the solid state are reported. Both molecules are characterized by the central benzene core bridging the individual transition metal complex fragments. The corresponding acetylide entities are, as typical, found in a linear arrangement with representative M–C, C–CC≡C and C≡C bond lengths.  相似文献   

15.
Vanadium–silicon heteronuclear oxide cluster cations were prepared by laser ablation of a V/Si mixed sample in an O2 background. Reactions of the heteronuclear oxide cations with methane in a fast‐flow reactor were studied with a time‐of‐flight (TOF) mass spectrometer to detect the cluster distribution before and after the reactions. Hydrogen abstraction reactions were identified over stoichiometric cluster cations [(V2O5)n(SiO2)m]+ (n=1, m=1–4; n=2, m=1), and the estimated first‐order rate constants for the reactions were close to that of the homonuclear oxide cluster V4O10+ with methane. Density functional calculations were performed to study the structural, bonding, electronic, and reactivity properties of these stoichiometric oxide clusters. Terminal‐oxygen‐centered radicals (Ot . ) were found in all of the stable isomers. These Ot . radicals are active sites of the clusters in reaction with CH4. The Ot . radicals in [V2O5(SiO2)1–4]+ clusters are bonded with Si rather than V atoms. All the hydrogen abstraction reactions are favorable both thermodynamically and kinetically. This work reveals the unique properties of metal/nonmetal heteronuclear oxide clusters, and may provide new insights into CH4 activation on silica‐supported vanadium oxide catalysts.  相似文献   

16.
Eu5F[SiO4]3 and Yb5S[SiO4]3: Mixed‐Valent Lanthanoid Silicates with Apatite‐Type of Structure By the reaction of Eu, EuF3, Eu2O3 with SiO2 in evacuated gold ampoules, using NaF as flux, at a temperature of 1000 °C for ten hours, dark‐red, platelet‐shaped single crystals of Eu5F[SiO4]3 are obtained. Similarly dark‐red, but pillar‐shaped single crystals of Yb5S[SiO4]3 are obtained by the reaction of Yb, Yb2O3 and S with SiO2 in the presence CsBr as flux in evacuated silica ampoules at 850 °C and an annealing time of seven days. Both compounds crystallize hexagonally (P63/m, Z = 2; Eu5F[SiO4]3: a = 954.79(9), c = 704.16(6) pm; Yb5S[SiO4]3: a = 972.36(9), c = 648.49(6) pm) in the case of Eu5F[SiO4]3 analogous to the mineral fluorapatite and for Yb5S[SiO4]3 as a bromapatite—type variety. The crystal structure containing isolated [SiO4]4— tetrahedra distinguishes two rare‐earth cation positions with coordination numbers of nine (M1) and seven (M2), in which the position M1 of the europium fluoride silicate is almost exclusively occupied by Eu2+ cations, whereas in ytterbium sulfide silicate it contains di‐ and trivalent Yb cations in the ratio 1 : 1. In both cases, however, the M2 position is only populated with M3+.  相似文献   

17.
Tailored molybdenum(VI)-oxo complexes of the form MoOCl2(OR)2(OEt2) catalyse olefin metathesis upon reaction with an organosilicon reducing agent at 70 °C, in the presence of olefins. While this reactivity parallels what has recently been observed for the corresponding classical heterogeneous catalysts based on supported metal oxide under similar conditions, the well-defined nature of our starting molecular systems allows us to understand the influence of structural, spectroscopic and electronic characteristics of the catalytic precursor on the initiation and catalytic proficiency of the final species. The catalytic performances of the pre-catalysts are determined by the highly electron withdrawing (σ-donation) character of alkoxide ligands, OtBuF9 being the best. This activity correlates with both the 95Mo chemical shift and the reduction potential that follows the same trend: OtBuF9>OtBuF6>OtBuF3.  相似文献   

18.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

19.
The silyl amide Et2SiCl‐NLi‐SitBu3 can be cleanly prepared from precursor silylamine Et2SiCl‐NH‐SitBu3 and Li[nBu]. The CF3SO3SiMe3 induced LiCl elimination of Et2SiCl‐NLi‐SitBu3 in thf afforded a 2‐silaazetidine derivative by [2+2] cycloaddition of Et2Si=N–SitBu3 with Et2Si(OCH=CH2)–NH–SitBu3. X‐ray quality crystals of this 2‐silaazetidine derivative (triclinic, space group P$\bar{1}$ ) were grown from benzene at room temperature. The starting material for this approach, Et2SiCl–NH–SitBu3, is water‐sensitive. Hydrolysis of Et2SiCl‐NH‐SitBu3 gave [tBu3SiNH3]Cl along with (Et2SiO)n oligomers. The hydro chloride [tBu3SiNH3]Cl could be isolated and was characterized by X‐ray crystallography (trigonal, space group P$\bar{3}$ ).  相似文献   

20.
Synthesis and Constitution of Fluorothalenite‐Type (Y3F[Si3O10]) Fluoride catena‐ Trisilicates M3F[Si3O10] with the Lanthanides (M = Dy, Ho, Er) By the reaction of the sesquioxides M2O3 with the corresponding trifluorides MF3 (M = Dy, Ho, Er), SiO2 and CsCl as flux (molar ratio: 1 : 1 : 3 : 6; 700 °C, 7 d) in evacuated silica tubes and gastight sealed metal capsules made of platinum, niobium or tantalum, respectively, single crystals of the fluoride silicates M3F[Si3O10] (monoclinic, P21/n; Z = 4; M = Dy: a = 734.06(6), b = 1116.55(9), c = 1040.62(8) pm, β = 97.281(7)°; M = Ho: a = 730.91(6), b = 1111.68(9), c = 1037.83(8) pm, β = 97.238(7)°; M = Er: a = 727.89(6), b = 1107.02(9), c = 1035.21(8) pm, β = 97.209(7)°) were obtained. The most important building groups in the crystal structures of the thalenite type are “isolated” [FM3]8+ triangles and catena‐trisilicate anions [Si3O10]8–, which contain three [SiO4] tetrahedra linked to a chain fragment via common corners. This has the shape of a horseshoe where both the terminal tetrahedra show different conformations (eclipsed and staggered) relative to the central unit. Therefore a chelatizing coordination on the same M3+ cation via oxygen atoms of both terminal [SiO4] groups is possible. The narrow area of existence of these fluoride silicates within the lanthanide series will be discussed and structural comparisons with other catena‐trisilicates are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号