首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
The reactions of cerium–vanadium cluster cations CexVyOz+ with CH4 are investigated by time‐of‐flight mass spectrometry and density functional theory calculations. (CeO2)m(V2O5)n+ clusters (m=1,2, n=1–5; m=3, n=1–4) with dimensions up to nanosize can abstract one hydrogen atom from CH4. The theoretical study indicates that there are two types of active species in (CeO2)m(V2O5)n+, V[(Ot)2]. and [(Ob)2CeOt]. (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size‐dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2)m(V2O5)n+ clusters falls between those of (CeO2)2–4+ and (V2O5)1–5+ in terms of C?H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping.  相似文献   

2.
The reactivities of the adamantane‐like heteronuclear vanadium‐phosphorus oxygen cluster ions [VxP4?xO10].+ (x=0, 2–4) towards hydrocarbons strongly depend on the V/P ratio of the clusters. Possible mechanisms for the gas‐phase reactions of these heteronuclear cations with ethene and ethane have been elucidated by means of DFT‐based calculations; homolytic C? H bond activation constitutes the initial step, and for all systems the P? O. unit of the clusters serves as the reactive site. More complex oxidation processes, such as oxygen‐atom transfer to, or oxidative dehydrogenation of the hydrocarbons require the presence of a vanadium atom to provide the electronic prerequisites which are necessary to bring about the 2e? reduction of the cationic clusters.  相似文献   

3.
Aluminum–vanadium bimetallic oxide cluster anions (BMOCAs) have been prepared by laser ablation and reacted with ethane and n‐butane in a fast‐flow reactor. A time‐of‐flight mass spectrometer was used to detect the cluster distribution before and after the reactions. The observation of hydrogen‐containing products AlVO5H? and AlxV4?xO11?xH? (x=1–3) strongly suggests that AlVO5? and AlxV4?xO11?x? (x=1–3) can react with ethane and n‐butane by means of an oxidative dehydrogenation process at room temperature. Density functional theory studies have been carried out to investigate the structural, bonding, electronic, and reactive properties of these BMOCAs. Terminal‐oxygen‐centered radicals (Ot.) were found in all of the reactive clusters, and the Ot. atoms, which prefer to be bonded with Al rather than V atoms, are the active sites of these clusters. All the hydrogen‐abstraction reactions are favorable both thermodynamically and kinetically. To the best of our knowledge, this is the first example of hydrogen‐atom abstraction by BMOCAs and may shed light on understanding the mechanisms of C? H activation on the surface of alumina‐supported vanadia catalysts.  相似文献   

4.
Vanadium–silver bimetallic oxide cluster ions (VxAgyOz+; x=1–4, y=1–4, z=3–11) are produced by laser ablation and reacted with ethane in a fast‐flow reactor. A reflectron time of flight (Re‐TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO3+, V2Ag2O6+, V2Ag4O7+, V3AgO8+, V3Ag3O9+, and V4Ag2O11+ ions, in which the oxygen‐centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V2Ag2O6++C2H6 are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the VxAgyOz+ cluster ions. The reactivity can be well‐tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V–Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems.  相似文献   

5.
Cerium oxide cluster cations (CemOn+, m=2–16; n=2m, 2m±1 and 2m±2) are prepared by laser ablation and reacted with acetylene (C2H2) in a fast‐flow reactor. A time‐of‐flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Reactions of stoichiometric CemO2m+ (m=2–6) with C2H2 produce CemO2m?2+ clusters, which indicates a “double‐oxygen‐atom transfer” reaction CemO2m++C2H2→CemO2m?2++(CHO)2 (ethanedial). A single‐oxygen‐atom transfer reaction channel is also identified as CemO2m++C2H2→CemO2m?1++C2H2O (at least for m=2 and 3). Density functional theory calculations are performed to study reaction mechanisms of Ce2O4++C2H2, and the calculated results confirm that both the single‐ and double‐oxygen‐atom transfer channels are thermodynamically and kinetically favourable.  相似文献   

6.
The activation of C?H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O?.) is an important species in C?H activation. The mechanistic details of C?H activation by O?. radicals can be well understood by studying the reactions between O?. containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n‐butane was studied by using a high‐resolution time‐of‐flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n‐butane by (Sc2O3)NO? (N=1–18) clusters was observed. The reactivity of (Sc2O3)NO? (N=1–18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13?) and 12 (Sc24O37?). Larger (Sc2O3)NO? clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)NO? (N=1–5) clusters, which were found to contain the O?. radicals as the active sites. The local charge environment around the O?. radicals was demonstrated to control the experimentally observed size‐dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O?. containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C?H bond activation.  相似文献   

7.
Oxygen‐rich scandium cluster anions ScO3–5? are prepared by laser ablation and allowed to react with n‐butane in a fast‐flow reactor. A time‐of‐flight mass spectrometer is used to detect the cluster distribution before and after the reactions. The ScO3? and ScO4? clusters can react with n‐butane to produce ScO3H?, ScO3H2?, and ScO4H?, while the more oxygen‐rich cluster ScO5? is inert. The experiment suggests that unreactive cluster isomers of ScO3? and ScO4? are also present in the cluster source. Density functional theory and ab initio methods are used to calculate the structures and reaction mechanisms of the clusters. The theoretical results indicate that the unreactive and reactive cluster isomers of ScO3,4? contain peroxides (O22?) and oxygen‐centered radicals (O.?), respectively. The mechanisms and energetics for conversion of unreactive O22? to reactive O.? species are also theoretically studied.  相似文献   

8.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

9.
The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium‐doped vanadium cluster cations CeV2O7+ are generated by laser ablation, mass‐selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time‐of‐flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen‐atom transfer , 2) double oxygen‐atom transfer , and 3) C?C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7+, which gives rise to C?C bond cleavage of ethene. Neither CexOy± nor VxOy± alone possess the necessary topological and electronic properties to bring about such a reaction.  相似文献   

10.
11.
The thermal gas‐phase reactions of the closed‐shell heteronuclear metal–oxide clusters [AlCeOx]+ (x =2–4) with methane have been explored by FT‐ICR mass spectrometry and high‐level quantum‐chemical calculation. Whereas [AlCeO2]+ and [AlCeO4]+ are inert towards methane under ambient conditions, [AlCeO3]+ spontaneously abstracts one hydrogen atom from methane. Mechanistic aspects have been addressed to reveal the reasons for the rather distinct reactivities of the [AlCeOx]+/CH4 couples, and the electronic origins of the unprecedented single hydrogen‐atom abstraction from methane by closed‐shell [AlCeO3]+ are discussed.  相似文献   

12.
Systematic access to metal‐functionalized polyoxometalates has thus far been limited to lacunary tungsten oxide and molybdenum oxide clusters. The first controlled, stepwise bottom‐up assembly route to metal‐functionalized molecular vanadium oxides is now presented. A di‐vacant vanadate cluster with two metal binding sites, (DMA)2[V12O32Cl]3? (DMA=dimethylammonium) is formed spontaneously in solution and characterized by single‐crystal X‐ray diffraction, ESI mass spectrometry, 51V NMR spectroscopy, and elemental analyses. In the cluster, the metal binding sites are selectively blocked by hydrogen‐bonded DMA placeholder cations. Reaction of the cluster with transition metals TM (Fe3+, Co2+, Cu2+, Zn2+) gives access to mono‐functionalized vanadate clusters (DMA)[{TM(L)}V12O32Cl]n? (L=ligand). Metal binding is accomplished by significant distortions of the vanadium oxide framework reminiscent of a pincer movement. Cluster stability under technologically relevant conditions in the solid‐state and solution is demonstrated.  相似文献   

13.
The study of chemical reactions between gold‐containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O?.), the role of gold in the systems without O?. is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2VO3+ clusters with closed‐shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C?H activation. The Au?Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2VO3+ and bare Au2+ demonstrates that Au2VO3+ not only retains the property of bare Au2+ that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.  相似文献   

14.
One of the fundamental processes in nature, the oxidation of water, is catalyzed by a small CaMn3O4?MnO cluster located in photosystem II (PS II). Now, the first successful preparation of a series of isolated ligand‐free tetrameric CanMn4?nO4+ (n=0–4) cluster ions is reported, which are employed as structural models for the catalytically active site of PS II. Gas‐phase reactivity experiments with D2O and H218O in an ion trap reveal the facile deprotonation of multiple water molecules via hydroxylation of the cluster oxo bridges for all investigated clusters. However, only the mono‐calcium cluster CaMn3O4+ is observed to oxidize water via elimination of hydrogen peroxide. First‐principles density functional theory (DFT) calculations elucidate mechanistic details of the deprotonation and oxidation reactions mediated by CaMn3O4+ as well as the role of calcium.  相似文献   

15.
OH+ is an extraordinarily strong oxidant. Complexed forms (L? OH+), such as H2OOH+, H3NOH+, or iron–porphyrin‐OH+ are the anticipated oxidants in many chemical reactions. While these molecules are typically not stable in solution, their isolation can be achieved in the gas phase. We report a systematic survey of the influence on L on the reactivity of L? OH+ towards alkanes and halogenated alkanes, showing the tremendous influence of L on the reactivity of L? OH+. With the help of with quantum chemical calculations, detailed mechanistic insights on these very general reactions are gained. The gas‐phase pseudo‐first‐order reaction rates of H2OOH+, H3NOH+, and protonated 4‐picoline‐N‐oxide towards isobutane and different halogenated alkanes CnH2n+1Cl (n=1–4), HCF3, CF4, and CF2Cl2 have been determined by means of Fourier transform ion cyclotron resonance meaurements. Reaction rates for H2OOH+ are generally fast (7.2×10?10–3.0×10?9 cm3 mol?1 s?1) and only in the cases HCF3 and CF4 no reactivity is observed. In contrast to this H3NOH+ only reacts with tC4H9Cl (kobs=9.2×10?10), while 4‐CH3‐C5H4N‐OH+ is completely unreactive. While H2OOH+ oxidizes alkanes by an initial hydride abstraction upon formation of a carbocation, it reacts with halogenated alkanes at the chlorine atom. Two mechanistic scenarios, namely oxidation at the halogen atom or proton transfer are found. Accurate proton affinities for HOOH, NH2OH, a series of alkanes CnH2n+2 (n=1–4), and halogenated alkanes CnH2n+1Cl (n=1–4), HCF3, CF4, and CF2Cl2, were calculated by using the G3 method and are in excellent agreement with experimental values, where available. The G3 enthalpies of reaction are also consistent with the observed products. The tendency for oxidation of alkanes by hydride abstraction is expressed in terms of G3 hydride affinities of the corresponding cationic products CnH2n+1+ (n=1–4) and CnH2nCl+ (n=1–4). The hypersurface for the reaction of H2OOH+ with CH3Cl and C2H5Cl was calculated at the B3 LYP, MP2, and G3m* level, underlining the three mechanistic scenarios in which the reaction is either induced by oxidation at the hydrogen or the halogen atom, or by proton transfer.  相似文献   

16.
A new structural arrangement Te3(RPIII)3 and the first crystal structures of organophosphorus(III)–tellurium heterocycles are presented. The heterocycles can be stabilized and structurally characterized by the appropriate choice of substituents in Tem(PIIIR)n (m=1: n=2, R=OMes* (Mes*=supermesityl or 2,4,6‐tri‐tert‐butylphenyl); n=3, R=adamantyl (Ad); n=4, R=ferrocene (Fc); m=n=3: R=trityl (Trt), Mesor by the installation of a PV2N2 anchor in RPIII[TePV(tBuN)(μ‐NtBu)]2 (R=Ad, tBu).  相似文献   

17.
Catalytic CO oxidation by molecular O2 is an important model reaction in both the condensed phase and gas‐phase studies. Available gas‐phase studies indicate that noble metal is indispensable in catalytic CO oxidation by O2 under thermal collision conditions. Herein, we identified the first example of noble‐metal‐free heteronuclear oxide cluster catalysts, the copper–vanadium bimetallic oxide clusters Cu2VO3–5? for CO oxidation by O2. The reactions were characterized by mass spectrometry, photoelectron spectroscopy, and density functional calculations. The dynamic nature of the Cu?Cu unit in terms of the electron storage and release is the driving force to promote CO oxidation and O2 activation during the catalysis.  相似文献   

18.
The synthesis, structure, substitution chemistry, and optical properties of the gold‐centered cubic monocationic cluster [Au@Ag8@Au6(C≡CtBu)12]+ are reported. The metal framework of this cluster can be described as a fragment of a body‐centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [MnAg8?nAu7(C≡CtBu)12]+ clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [CunAg8Au7?n(C≡CtBu)12]+ clusters (n=1–6), with the Cu atom(s) presumably occupying the capping site(s). The parent cluster exhibited strong emission in the near‐IR region (λmax=818 nm) with a quantum yield of 2 % upon excitation at λ=482 nm. Its photoluminescence was quenched upon substitution with a Na+ ion. DFT calculations confirmed the superatom characteristics of the title compound and the sodium‐substituted derivatives.  相似文献   

19.
Density functional theory (DFT) calculations are used to investigate the reaction mechanism of V3O8+C2H4. The reaction of V3O8 with C2H4 produces V3O7CH2+HCHO or V3O7+CH2OCH2 overall barrierlessly at room temperature, whereas formation of hydrogen‐transfer products V3O7+CH3CHO is subject to a tiny overall free energy barrier (0.03 eV), although the formation of the last‐named pair of products is thermodynamically more favorable than that of the first two. These DFT results are in agreement with recent experimental observations. The (Ob)2V(OtOt). (b=bridging, t=terminal) moiety containing the oxygen radical in V3O8 is the active site in the reaction with C2H4. Similarities and differences between the reactivities of (Ob)2V(OtOt). in V3O8 and the small VO3 cluster [(Ot)2VOt.] are discussed. Moreover, the effect of the support on the reactivity of the (Ob)2V(OtOt). active site is evaluated by investigating the reactivity of the cluster VX2O8, which is obtained by replacing the V atoms in the (Ob)3VOt support moieties of V3O8 with X atoms (X=P, As, Sb, Nb, Ta, Si, and Ti). Support X atoms with different electronegativities influence the oxidative reactivity of the (Ob)2V(OtOt). active site through changing the net charge of the active site. These theoretical predictions of the mechanism of V3O8+C2H4 and the effect of the support on the active site may be helpful for understanding the reactivity and selectivity of reactive O. species over condensed‐phase catalysts.  相似文献   

20.
As the biological activation and oxidation of water takes place at an inorganic cluster of the stoichiometry CaMn4O5, manganese oxide is one of the materials of choice in the quest for versatile, earth‐abundant water splitting catalysts. To probe basic concepts and aid the design of artificial water‐splitting molecular catalysts, a hierarchical modeling strategy was employed that explores clusters of increasing complexity, starting from the tetramanganese oxide cluster Mn4O4+ as a molecular model system for catalyzed water activation. First‐principles calculations in conjunction with IR spectroscopy provide fundamental insight into the interaction of water with Mn4O4+, one water molecule at a time. All of the investigated complexes Mn4O4(H2O)n+ (n=1–7) contain deprotonated water with a maximum of four dissociatively bound water molecules, and they exhibit structural fluxionality upon water adsorption, inducing dimensional and structural transformations of the cluster core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号