首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface molecular motions of amorphous polymeric solids have been directly measured on the basis of scanningviscoelasticity microscopic (SVM) and lateral force microscopic (LFM) measurements. SVM and LFM measurements werecarried out for films of conventional monodisperse polystyrene (PS) with sec-butyl and proton-terminated end groups atroom temperature. In the case of the number-average molecular weight, M_n, less than ca. 4.0×10~4, the surface was in a glass-rubber transition state even though the bulk glass transition temperature, T_g was far above room temperature, meaning thatthe surface molecular motion was fairly active compared with that in the bulk. LFM measurements of the, monodisperse PSfilms at various scanning rates and temperatures revealed that the time-temperature superposition was applicable to thesurface mechanical relaxation behavior and also that the surface glass transition temperature, T_g~σ, was depressed incomparison with the bulk one even though the magnitude of M_n was fairly high at 1.40×10~5. The surface molecular motionof monodisperse PS with various chain end groups was investigated on the basis of temperature-dependent scanningviscoelasticity microscopy (TDSVM). The T_g~σs for the PS films with M_n of 4.9×10~6 to 1.45×10~6 measured by TDSVMwere smaller than those for the bulk one, with corresponding M_ns, and the T_g~σs for M_ns smaller than ca. 4.0×10~4 were lowerthan room temperature (293 K). The active thermal molecular motion at the polymeric solid surface can be interpreted interms of an excess free volume near the surface region induced by the surface localization of chain end groups. In the case ofM_n=ca. 5.0×10~4, the T_g~σs for the α, ω-diamino-terminated PS (α,ω-PS(NH_2)_2) and α, ω-dicarboxy-terminated PS (α, ω-PS(COOH)_2) films were higher than that of the PS film. The change of T_g~σ for the PS film with various chain end groups canbe explained in terms of the depth distribution of chain end groups at the surface region depending on the relativehydrophobicity.  相似文献   

2.
The surface molecular motion of monodisperse polystyrene (PS) with various chain end groups was investigated on the basis of temperature‐dependent scanning viscoelasticity microscope (TDSVM). The surface glass transition temperatures, Tgss for the proton‐terminated PS (PS‐H) films with number‐average molecular weight, Mn of 4.9k–1,450k measured by TDSVM measurement were smaller than those for the bulk one, with corresponding Mns, and the Tgss for Mn smaller than ca. 50k were lower than room temperature (293 K). In the case of Mn = ca. 50k, the Tgss for the α,ω‐diamino‐terminated PS (α,ω‐PS(NH2)2) and α,ω‐dicarboxy‐terminated PS (α,ω‐PS(COOH)2) films were higher than that of the PS‐H film. On the other hand, the Tgs for the α,ω‐perfluoroalkylsilyl‐terminated PS (α,ω‐PS(SiC2CF6)2) film with the same Mn was much lower than those for the PS films with all other chain ends. The change of Tgs for the PS film with various chain end groups can be explained in terms of the depth distribution of chain end groups at the surface region.  相似文献   

3.
通过低能量功能端基的表面富集作用,研究了聚苯乙烯(PS)薄膜在聚甲基丙烯酸甲酯(PMMA)表面上的铺展和润湿动力学.用光学显微镜跟踪了PS薄膜的润湿行为,并对高分子熔体膜中非连续部分尺寸的增大速率进行了测定.分别用XPS和AFM对PS薄膜的表面组成和PS液滴的平衡接触角进行了测定.发现具有低表面能的氟碳端基在薄膜表面富集使PS薄膜的表面张力下降,并使PS液滴在PMMA表面上的平衡接触角减小,从而使高分子熔体膜中非连续部分尺寸的增长速率下降,得到了与液液界面铺展和润湿理论一致的实验结果.  相似文献   

4.
The surface molecular motion of polymeric solids was investigated on the basis of scanning force microscopic and temperature-dependent X-ray photoelectron spectroscopic measurements. The surface of the monodisperse polystyrene films was in a glass-rubber transition state even at 293 K in the case of number-average molecular weight less than ca. 30k. The surface glass transition temperature, Tgs for the symmetric poly(styrene-block-methyl methacrylate) diblock copolymer films were much lower than those for the bulk samples. A remarkable depression of Tg at the air-polymer interface was explained by the surface localization of chain end groups.  相似文献   

5.
During preparation of very thin polymer belnd films from a solution of polymers, the phase‐separated structures which are quite different from that observed for the bulk blend film was observed. From atomic force microscopic(AFM) observation, it is concluded that the surface undulation, which reflects the phase separated morphology of the blend system, is present. In the case of (polystyrene(PS)/poly(methyl methacrylate)(PMMA)) blend system, a large influence of end‐group chemistry on the surface morphology was observed. The phase identification of the (rubbery polymer/glassy polymer) binary blend thin films was successfully achieved by scanning vioscoelasticity microsopy(SVM).  相似文献   

6.
Ordering of polystyrene (PS) molecules in thin films collapsed from toluene solutions onto a glass substrate by dip coating is studied in relation to the polymer molecular weight and its distribution. The degree of ordering of chain elements is deduced from measurements of film birefringence, between the normal and parallel directions to the film surface, as a function of film thickness. A technique has been developed for measuring this birefringence by monitoring the intensity of laser light passing through the film, as a function of the angle of incidence. Films of monodisperse low-molecular-weight PS exhibit high ordering very close to the substrate, but this ordering decays within 1 μm from the glass surface. Films of monodisperse high-molecular-weight PS, on the other hand, exhibit a much smaller, but very long-range degree of order. In a blend of PS of these two molecular weights, as well as in a polydisperse sample, these effects appear in tandem. The long-range ordering effect, evident in the 100,000 molecular weight polystyrene films, is much smaller in magnitude in lower-molecular-weight films, reflecting probably the importance of chain entanglements.  相似文献   

7.
本文利用椭偏仪研究了成膜方式对不同分子量聚苯乙烯(PS)超薄膜玻璃化转变行为的影响.发现PS超薄膜的玻璃化转变温度(Tg)随着厚度降低的幅度与其成膜方式、分子量有关.当PS膜低于一定厚度时,旋涂法制备的PS膜的Tg比相同厚度浇铸法制备的膜低,且二者Tg差值随着厚度的降低而增大.这二种膜Tg的差值和Tg发生偏离时膜的临界厚度随聚苯乙烯分子量的增加而增加.利用非辐射能量转移荧光光谱证实成膜方式主要是影响PS分子链在膜中的构象.旋涂法制备的PS膜相对于本体在近表面区域分子链的形变更大.分子量愈大,分子运动时内摩擦阻力愈大,近表面区域分子的残余应力愈大.由于强运动能力的活性层(空气/PS界面)对PS薄膜Tg的影响占主导,相同厚度下分子链愈伸展,残余应力越大,PS薄膜的Tg越低,导致成膜方式与分子量的影响也愈大.  相似文献   

8.
The effects of the alkyl group on the surface segregation of poly(n-alkyl methacrylate) end-capped with various numbers of units of 2-perfluorooctylethyl methacrylate (FMA) (PnAMA-ec-PFMA) were investigated by differential scanning calorimetry, angle-resolved XPS analysis, contact angle measurements, and X-ray diffraction (XRD). The results show that with similar numbers of FMA units at the polymer chain end the extent of fluorine segregation (Q) increased with increasing the number of carbon atoms in the side n-alkyl chains of poly(n-alkyl methacrylate). The surface fluorine content within 5 nm deep of the film of poly(n-octadecyl methacrylate) end-capped with one FMA unit (PODMA(160)-ec-PFMA(1.0)) was 208-fold higher than that of the bulk level. These observed differences in Q values were found due to the aggregate structure of the end-capped polymers in the solution, the flexibility, and the crystallinity of the n-alkyl side chains. When the nonfluorinated block was completely amorphous, the molecular aggregate structure of the end-capped polymers in the solution played an important role in the surface segregation of the fluorinated moieties on the resulting film. However, when the nonfluorinated block was crystalline, crystallinity would enhance greatly the segregation of the fluorinated moieties.  相似文献   

9.
Lateral force microscopy (LFM) was used to probe the molecular motions at thin polystyrene film surface. The effect of the applied load on the LFM measurements was investigated by presenting both the LFM results and the surface morphology after several scans over the same area. Depending on the loads, the scanning can be nonperturbative (without alternating the surface morphology) or perturbative (patterning the surface). Temperature-dependent LFM measurements were conducted in order to determine the apparent transitions at the surface. Perturbative scans under high loads (e.g., 150 nN) witnessed that the apparent transitions shifted to low temperatures with an increasing scan rate, while the transitions behaved oppositely under lower loads (1, 10, and 20 nN). The heating effect is suggested to account for the behavior under high loads. According to our results from nonperturbative LFM, the apparent glass transition temperature (T(g)s) is more than 10 K lower than the bulk value. Moreover, rate-dependent LFM measurements were performed under 1 nN in order to detect the surface molecular motions. Time-temperature superposition yields a master curve exhibiting three apparent relaxation peaks. The molecular motions at the surface are discussed on the context of the coupling model.  相似文献   

10.
本文研究了Si/Si02、Si/Si—H基底与聚苯乙烯(Ps)之间的界面相互作用对Ps薄膜的玻璃化转变及相关力学性能的影响.结果显示,无论何种基底,Ps薄膜的玻璃化转变温度(L)都随其厚度降低而降低.但相同厚度(〈110nm)下,以Si/Si-H为基底时Ps薄膜的瓦比以Si/Si02为基底的PS薄膜高.Si/Si02表面Ps薄膜疋开始下降的临界厚度为110nm,远高于以Si/Si—H为基底时的40nm.对Ps薄膜的膨胀系数和弹性模量进行研究,也得到相似的临界厚度.另外,与Si/Si02基底相比,在Si/Si-H上的Ps薄膜具有更低的膨胀系数以及较高弹性模量.可能原因是Si/Si-H与Ps具有较强的相互作用,限制了该界面分子的运动能力,导致基底/PS界面效应对薄膜分子运动的影响力增强,造成该薄膜瓦的厚度依赖性下降,并呈现出相对较硬的力学特征.  相似文献   

11.
The effect of chain-end chemistry on surface and interfacial segregation in symmetric blends of polystyrene (hPS)/deuterated polystyrene (dPS) has been investigated by X-ray photoelectron and secondary ion mass spectroscopy in conjunction with neutron reflectivity measurements. Alpha,omega-fluoroalkyl- and alpha,omega-carboxy-terminated polystyrenes (alpha,omega-hPS(Rf)2 and alpha,omega-hPS(COOH)2) were used as end-functionalized polymers; the former possesses chain ends with lower surface energies, and the latter possesses higher surface energies compared with that of the main chain. In the case of an alpha,omega-hPS(Rf)2/dPS blend film, alpha,omega-hPS(Rf)2 was enriched at the surface owing to the surface localization of the Rf groups, although the surface energy of the hPS segments was slightly higher than that of the dPS ones. On the contrary, in the case of an alpha,omega-hPS(COOH)2/dPS blend film, dPS was preferentially segregated at the surface. This may be due to a surface depletion of COOH ends and an apparent molecular weight increase of alpha,omega-hPS(COOH)2 produced by a hydrogen-bonded intermolecular association of COOH ends in addition to the surface energy difference between hPS and dPS segments. Interestingly, both Rf and COOH chain ends were partitioned to the substrate interface for the alpha,omega-hPS(Rf)2/dPS and alpha,omega-hPS(COOH)2/dPS blend films, resulting in the segregation of the hPS component at the substrate interface for both blends. The results presented imply that surface and interfacial segregation in polymer blends could be regulated by incorporating functional groups into the end portions of one component.  相似文献   

12.
Symmetrical diblock copolymers (P(S(D)‐b‐nBMA)) of deuterated poly(styrene) (PS(D)) and poly(nbutylmethacrylate) (PnBMA) were investigated by neutron reflectometry with respect to periodicity and interfacial width. Four different molecular weight P(S(D)‐b‐nBMA) samples were used to prepare thin films by spin coating on glass substrates. Two of the samples were in the intermediate segregated state. The other two samples were in the bulk disordered state, however, due to thin film geometry a surface and substrate induced ordering could be revealed. Utilizing the respective theories (Matsen and Bates for intermediate segregated samples and Fredrickson for a surface and substrate induced ordering), the product of interaction parameter χ and chain length N was calculated. Taking account for the different molecular weights, an interaction parameter was obtained which is the same for all of the four samples, within the experimental error. Using the strong segregation theory from Semenov to calculate χ for the intermediate segregated samples, the interaction parameters for the four samples are not consistent.  相似文献   

13.
利用接触角、XPS、SFG、AFM等技术研究了环己酮、甲苯和三氟甲苯为成膜溶剂所得聚甲基丙烯酸甲酯-b-聚(甲基丙烯酸-2-全氟辛基乙酯)(PMMA—b—PFMA)嵌段共聚物膜的表面结构与性能.发现浇铸成膜时成膜溶剂对聚合物氟化组分向表面富集程度的影响相对较小,而旋涂成膜时溶剂的影响很大.不管以何种形式成膜,三氟甲苯溶剂最有利于氟化组分向表面富集,甲苯次之,环己酮最差.这一现象与溶剂的挥发速度无关.聚合物在溶液中的聚集结构、气/液界面结构是造成成膜方式对聚合物表面结构与性能产生巨大影响的主要原因.当聚合物在溶液中形成以PFMA为核、PMMA为冠的胶束结构时,在溶液固化过程中氟化组分向表面富集需要较长的时间,这时由于成膜方法直接影响溶液的固化速度,造成其对氟化组分向表面富集的程度影响很大.当聚合物在溶液中以单分子或松散聚集体存在,在溶液固化过程中氟化组分向表面富集的速度很快,这时成膜方法对氟化组分向表面富集的程度影响很小.以上结果无论对理论研究还是应用研究都具有重要意义.  相似文献   

14.
Polyhedral oligomeric silsesquioxane (POSS) meets increasing interest as a building unit for inorganic-organic hybrid materials. The incorporation of cyclopentyl-substituted POSS (CpPOSS) into polystyrene (PS) thin films led to an inhibition of dewetting. In this paper, the dispersion state of CpPOSS in the CpPOSS/PS hybrid films and, furthermore, the relationships between the structure and dewetting inhibition effect are discussed. Structural analysis of the hybrid films revealed that CpPOSS segregated to the film surface and crystallized. The segregation of CpPOSS to the surface changes the surface free energy and spreading coefficient of the film. Interfacial structure was also roughened by the segregation of CpPOSS, which can contribute to the inhibition of dewetting by pinning the contact line of the PS film with the substrate. The inhibition of dewetting can be attributed to the modification of the film surface and interface by the segregation of CpPOSS.  相似文献   

15.
The effect of polydispersity on surface segregation of a lower molecular weight polymer component in a higher molecular weight linear polymer melt host is investigated theoretically. We show that the integrated surface excess zM of a polymer component of molecular weight M satisfies a simple relation zM=2Ue(M/Mw-1)phiM, where Mw is the weight averaged molecular weight, phiM is the polymer volume fraction, and Ue is the attraction of polymer chain ends to the surface. Ue is principally of entropic origin, but also reflects any energetic preference of chain ends to the surface. We further show that the surface tension gammaM of a polydisperse melt of high molar mass components depends on the number average degree of polymerization Mn as, gammaM=gammainfinity+2UerhobRT/Mn. The parameter gammainfinity is the asymptotic surface tension of an infinitely long polymer of the same chemistry, rhob is the bulk density of the polymer, R is the universal gas constant, and T is the temperature. The predicted gammaM compare favorably with surface tension values obtained from self-consistent field theory simulations that include equation of state effects, which account for changes in polymer density with molecular weight. We also compare the predicted surface tension with available experimental data.  相似文献   

16.
Deuterium labeling has been shown previously to affect thermodynamic interactions at polymer surfaces, polymer/polymer heterogeneous interfaces, and in bulk (away from a surface or interface). However, the changes in polymer-polymer interactions due to deuterium labeling have not been thoroughly investigated for highly immiscible systems. It is shown here that deuterium labeling can influence polymer-polymer interactions at heterogeneous interfaces with highly immiscible systems, namely, polystyrene/poly(2-vinylpyridine) (PS/P2VP), polystyrene/poly(4-vinylpyridine) (PS/P4VP), and polystyrene/poly(methyl methacrylate) (PS/PMMA). Using secondary ion mass spectrometry, segregation of deuterium labeled polystyrene (dPS) in a dPS + unlabeled PS (dPS:hPS) blend layer was observed at the dPS:hPS/hP2VP, dPS:hPS/hP4VP, and dPS:hPS/hPMMA heterogeneous interfaces. However, a reference system involving PS on a PS brush shows no segregation of dPS to the interface.  相似文献   

17.
 The effect of alkali-soluble resin (ASR), poly(ethylene-co-acrylic acid), EAA, postadded to emulsifier-free monodisperse poly(butyl methacrylate) (PBMA) latexes on the kinetics of film formation was investigated using atomic force microscopy (AFM). Corrugation height of latex particles in films was monitored at various annealing temperatures as a function of annealing time. Enhanced polymer diffusion was found in a latex film containing ASR regardless of anneal-ing temperature. With increasing annealing temperature, a much higher rate of polymer diffusion was found in latex films containing ASR. These results can be interpreted that the low molecular weight and low Tg EAA resin adsorbed at the particle surface is more susceptible to diffusion than that of the PBMA in the film formation stage, thus it enhances the mobility of PBMA polymer. Received: 30 October 1997 Accepted: 20 March 1998  相似文献   

18.
Lap shear and friction force measurements were carried out on a series of monodisperse polystyrene (PS) films below the corresponding glass‐transition temperatures. It showed that adhesion between the PS/PS interface was possible at the temperature below the bulk Tg, and the lower the molecular weight of PS, the lower the temperature at which the interfacial strength was detectable. The examination of a series of molecular weights indicated both the surface molecular motion and the magnitude of the interfacial strength were dependent on molecular weight and its distribution. And a steep increase of the friction force with increasing the test temperature was observed around 0 ∼ 30 °C. The contact angle of water versus molecular weight measurements also showed a transition at room temperature. The behavior observed in this study was supposed to be due to the increased molecular mobility, and was in good agreement with the measured surface transition temperatures by DSC. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 654–658, 2000  相似文献   

19.
High‐density polymer brushes on substrates exhibit unique properties and functions stemming from the extended conformations due to the surface constraint. To date, such chain organizations have been mostly attained by synthetic strategies of surface‐initiated living polymerization. We show herein a new method to prepare a high‐density polymer brush architecture using surface segregation and self‐assembly of diblock copolymers containing a side‐chain liquid‐crystalline polymer (SCLCP). The surface segregation is attained from a film of an amorphous base polymer (polystyrene, PS) containing a minor amount of a SCLCP‐PS diblock copolymer upon annealing above the glass‐transition temperature. The polystyrene portion of the diblock copolymer can work as a laterally mobile anchor for the favorable self‐assembly on the polystyrene base film.  相似文献   

20.
A gold nanoparticle embedding technique is used to determine how vacuum and pressured carbon dioxide (CO2) affect polystyrene (PS) thin film properties. The pressured CO2 greatly increased the gold nanoparticle embedding depth, possibly due to a low cohesive energy density near the film surface. For the monodisperse PS used in this study (Mn = 214,000), two spin‐coated thin films with intimate contact can be bonded below the bulk glass transition temperature (Tg) under CO2 pressure when the embedded depth is larger than half of the gyration radius of PS molecules. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1535–1542, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号