首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Aerosols significantly influence atmospheric processes such as cloud nucleation, heterogeneous chemistry, and heavy-metal transport in the troposphere. The chemical and physical complexity of atmospheric aerosols results in large uncertainties in their climate and health effects. In this article, we review recent advances in scientific understanding of aerosol processes achieved by the application of quantum chemical calculations. In particular, we emphasize recent work in two areas: new particle formation and heterogeneous processes. Details in quantum chemical methods are provided, elaborating on computational models for prenucleation, secondary organic aerosol formation, and aerosol interface phenomena. Modeling of relative humidity effects, aerosol surfaces, and chemical kinetics of reaction pathways is discussed. Because of their relevance, quantum chemical calculations and field and laboratory experiments are compared. In addition to describing the atmospheric relevance of the computational models, this article also presents future challenges in quantum chemical calculations applied to aerosols.  相似文献   

2.
Ice nucleation by particles immersed in supercooled cloud droplets   总被引:1,自引:0,他引:1  
The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.  相似文献   

3.
Atmospheric aerosol particles are important in many atmospheric processes such as: light scattering, light absorption, and cloud formation. Oxidation reactions continuously change the chemical composition of aerosol particles, especially the organic mass component, which is often the dominant fraction. These ageing processes are poorly understood but are known to significantly affect the cloud formation potential of aerosol particles. In this study we investigate the effect of humidity and ozone on the chemical composition of two model organic aerosol systems: oleic acid and arachidonic acid. These two acids are also compared to maleic acid an aerosol system we have previously studied using the same techniques. The role of relative humidity in the oxidation scheme of the three carboxylic acids is very compound specific. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. The particle phase has a strong effect on the particle processing and the effect of water on the oxidation processes. Oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In addition, water does not influence the oxidation reactions of oleic acid particles, which is partly explained by the structure of oxidation intermediates. The low water solubility of oleic acid and its ozonolysis products limits the effect of water. This is very different for maleic and arachidonic acid, which change their phase from liquid to solid upon oxidation or upon changes in humidity. In a solid particle the reactions of ozone and water with the organic particle are restricted to the particle surface and hence different regimes of reactivity are dictated by particle phase. The potential relevance of these three model systems to mimic ambient atmospheric processes is discussed.  相似文献   

4.
Summary Neutron activation analysis (NAA) was employed as an analytical technique to measure atmospheric aerosol concentrations of trace metals in Port Aransas, TX on the Gulf of Mexico. The sources of atmospheric aerosols and the seasonal variation of the sources are explored. High atmospheric iron concentrations are then shown to have a possible correlation to the occurrences of red tide in this region. The data shows that this correlation is plausible, but due to the many factors that affect red tide growth a definitive conclusion may not be reached. The period of study for these measurements was September 12, 2000 to January 4, 2002.  相似文献   

5.
As aerosols, such as sea salt and mineral dust, are transported through the atmosphere they undergo heterogeneous reactions with nitrogen oxides to form nitrate salts. The nitrate salt can have quite different physicochemical properties than the original aerosol, resulting in an aerosol that will markedly differ in its climate impact, heterogeneous chemistry, and photoactivity. In this Feature Article, we will review some aspects of the importance of aqueous nitrate aerosols as well as describe a new multi-analysis aerosol reactor system (MAARS) that is used to measure the physicochemical properties of these atmospherically relevant aerosols. Here we show measurements of the hygroscopic properties, cloud condensation nuclei activity, and FTIR extinction of nitrate salt aerosol. In particular, we have measured the hygroscopic growth of 100 nm size-selected nitrate particles including NaNO3, Ca(NO3)2, Mg(NO3)2, and a 1:1 mixture of Ca(NO3)2 and Mg(NO3)2 as a function of relative humidity (RH) at 298 K. Using K?hler theory, we have quantified the water content of these particles with increasing RH. FTIR extinction measurements of the full size distribution of each of the nitrate aerosols are analyzed to yield information about the local solvation environment of the nitrate ions and the long-wavelength light scattering of the particles at different RH. Furthermore, we have measured and compared the cloud condensation nuclei (CCN) activity of CaCO3, a large component of mineral dust aerosol, and Ca(NO3)2, a product of atmospherically aged CaCO3 through reaction with nitrogen oxides, at supersaturations from 0.1% to 0.9%. These quantitative physicochemical data are needed if we are to better understand the chemistry as well as the climate effects of atmospheric aerosols as they are entrained, transported, reacted, and aged in the atmosphere. Our studies here focus on aqueous nitrate salts, the products of the reaction of nitrogen oxides with sea salt and mineral dust aerosol.  相似文献   

6.
Gas‐phase oxidation routes of biogenic emissions, mainly isoprene and monoterpenes, in the atmosphere are still the subject of intensive research with special attention being paid to the formation of aerosol constituents. This laboratory study shows that the most abundant monoterpenes (limonene and α‐pinene) form highly oxidized RO2 radicals with up to 12 O atoms, along with related closed‐shell products, within a few seconds after the initial attack of ozone or OH radicals. The overall process, an intramolecular ROO→QOOH reaction and subsequent O2 addition generating a next R′OO radical, is similar to the well‐known autoxidation processes in the liquid phase (QOOH stands for a hydroperoxyalkyl radical). Field measurements show the relevance of this process to atmospheric chemistry. Thus, the well‐known reaction principle of autoxidation is also applicable to the atmospheric gas‐phase oxidation of hydrocarbons leading to extremely low‐volatility products which contribute to organic aerosol mass and hence influence the aerosol–cloud–climate system.  相似文献   

7.
The complex interplay of processes that govern the size, composition, phase and morphology of aerosol particles in the atmosphere is challenging to understand and model. Measurements on single aerosol particles (2 to 100 μm in diameter) held in electrodynamic, optical and acoustic traps or deposited on a surface can allow the individual processes to be studied in isolation under controlled laboratory conditions. In particular, measurements can now be made of particle size with unprecedented accuracy (sub-nanometre) and over a wide range of timescales (spanning from milliseconds to many days). The physical state of a particle can be unambiguously identified and its composition and phase can be resolved with a high degree of spatial resolution. In this review, we describe the advances made in our understanding of aerosol properties and processes from measurements made of phase behaviour, hygroscopic growth, morphology, vapour pressure and the kinetics of water transport for single particles. We also show that studies of the oxidative aging of single particles, although limited in number, can allow the interplay of these properties to be investigated. We conclude by considering the contributions that single particle measurements can continue to make to our understanding of the properties and processes occurring in atmospheric aerosol.  相似文献   

8.
9.
Levoglucosan is a tracer for biomass burning sources in atmospheric aerosol particles. Therefore, much effort has been recently put into developing methods for its quantification. This review describes and compares both established and emerging analytical methods for levoglucosan quantification in ambient aerosol samples, with the special needs of the environmental analytical chemist in mind.  相似文献   

10.
Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO(x) concentrations as well as temperature, humidity, and particle acidity. Such knowledge should be useful for interpreting the results of laboratory and field studies and for developing atmospheric chemistry models. A number of recommendations for future research are also presented.  相似文献   

11.
Real-time,single-particle measurements of ambient aerosols in Shanghai   总被引:1,自引:0,他引:1  
As one of the major components of the earth’s atmosphere, airborne particulate matter (or aerosol) has strong effects on air quality, regional and global climate, and human health. In ambient atmosphere, the different sources and complex evolutionary history of aerosol particles make the study of their chemical and physical properties extremely challenging. The invention of an online single-particle aerosol mass spectrometer provides a powerful technique to determine the size and chemical composition of individual aerosol particles in real time. We deployed an aerosol time-of-flight mass spectrometer (ATOFMS) to carry out single particle measurement in the urban area of Shanghai in the past few years. In this review paper, we summarize our recent work on the identification of particle type, mixing state and aging process, and the application of the individual particle information to the source apportionment of primary aerosol, and the investigation of the formation mechanism of secondary aerosol in Shanghai. The special capabilities of single particle mass spectrometry are proven essential to these studies. Multi-functional technique combinations of ATOFMS with other state-of-art aerosol instruments are also discussed for future studies.  相似文献   

12.
In this tutorial review we summarize the standard approaches to describe aerosol formation from atmospheric vapours and subsequent growth - with a particular emphasis on the interplay between equilibrium thermodynamics and non-equilibrium transport. We review the use of thermodynamics in describing phase equilibria and formation of aerosol particles from supersaturated vapour via nucleation. We also discuss the kinetics of cluster formation and transport phenomena, which are used to describe dynamic mass transport between the gaseous and condensed phases in a non-equilibrium system. Finally, we put these theories into the context of atmospheric observations of aerosol formation and growth.  相似文献   

13.
Brown carbon is a hotspot in the field of atmospheric carbonaceous aerosol research. It has significant influence on regional radiative forcing and exerts climatic effects due to its apparent absorbance in the near ultraviolet-visible region. Brown carbon is mainly derived from incomplete combustion of biomass or coal, as well as secondary sources, such as a series of atmospheric photochemical reactions from volatile organic compounds. Although the composition of brown carbon is complex, high-resolution mass spectrometry, with its ultra-high mass resolution and precision, enables elucidation of the characteristics of the organic components of brown carbon at the molecular level. Here, high-resolution mass spectrometry combined with traditional analytical methods was used for the study of brown carbon. The development of high-resolution mass spectrometry for brown carbon separation is reviewed, as well as compositional analysis, source apportionment, and formation mechanism of brown carbon based on high-resolution data. In addition, the issues and prospects for the application of high-resolution mass spectrometry to evaluate brown carbon are discussed.  相似文献   

14.
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.  相似文献   

15.
Atmospheric aerosols: composition, transformation, climate and health effects   总被引:14,自引:0,他引:14  
Aerosols are of central importance for atmospheric chemistry and physics, the biosphere, climate, and public health. The airborne solid and liquid particles in the nanometer to micrometer size range influence the energy balance of the Earth, the hydrological cycle, atmospheric circulation, and the abundance of greenhouse and reactive trace gases. Moreover, they play important roles in the reproduction of biological organisms and can cause or enhance diseases. The primary parameters that determine the environmental and health effects of aerosol particles are their concentration, size, structure, and chemical composition. These parameters, however, are spatially and temporally highly variable. The quantification and identification of biological particles and carbonaceous components of fine particulate matter in the air (organic compounds and black or elemental carbon, respectively) represent demanding analytical challenges. This Review outlines the current state of knowledge, major open questions, and research perspectives on the properties and interactions of atmospheric aerosols and their effects on climate and human health.  相似文献   

16.
Summary Elemental carbon is an ubiquitous part of the atmospheric aerosol, originating from all combustion processes. It influences the radiative transfer by its absorbing properties leading to influences on regional climate. While its importance in air chemistry seems to be small there may exist hygienic aspects due to absorbed mutagenic and cancerogenic substances which are not understood completely yet. Soot has unique properties as a tracer for atmospheric transport processes. The mostly hydrophobic character of soot particles influences its life time because it impedes an incorporation into clouds and thus a rapid removal by wet deposition processes. From a literature review a number of tasks for the analyst are formulated concerning improvement of analytical measurement techniques, understanding the change of the surface properties from hydrophobic to hydrophilic, and the use of absorbed substances for source identification which is of importance for a better use of soot as a tracer for atmospheric transport processes.  相似文献   

17.
18.
Secondary organic material (SOM) constitutes a large mass fraction of atmospheric aerosol particles. Understanding its impact on climate and air quality relies on accurate models of interactions with water vapour. Recent research shows that SOM can be highly viscous and can even behave mechanically like a solid, leading to suggestions that particles exist out of equilibrium with water vapour in the atmosphere. In order to quantify any kinetic limitation we need to know water diffusion coefficients for SOM, but this quantity has, until now, only been estimated and has not yet been measured. We have directly measured water diffusion coefficients in the water soluble fraction of α-pinene SOM between 240 and 280 K. Here we show that, although this material can behave mechanically like a solid, at 280 K water diffusion is not kinetically limited on timescales of 1 s for atmospheric-sized particles. However, diffusion slows as temperature decreases. We use our measured data to constrain a Vignes-type parameterisation, which we extend to lower temperatures to show that SOM can take hours to equilibrate with water vapour under very cold conditions. Our modelling for 100 nm particles predicts that under mid- to upper-tropospheric conditions radial inhomogeneities in water content produce a low viscosity surface region and more solid interior, with implications for heterogeneous chemistry and ice nucleation.  相似文献   

19.
The oxidative evolution ("aging") of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicrometer particles composed of model oxidized organics-1,2,3,4-butanetetracarboxylic acid (C(8)H(10)O(8)), citric acid (C(6)H(8)O(7)), tartaric acid (C(4)H(6)O(6)), and Suwannee River fulvic acid-were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.  相似文献   

20.
Summary A set of 15 atmospheric aerosol samples was collected in an industrial area of Lisbon, Portugal and then analyzed by instrumental neutron activation analysis (INAA). Both fine and coarse aerosol samples were collected during November and December 2001 on polycarbonate filters with Gent samplers. The INAA methodology utilized both thermal and epithermal neutron irradiations. Compton suppressed and normal gamma-ray spectra were acquired simultaneously for each measurement and the elemental concentrations of 30 elements were determined. Enrichment factors, wind speed comparison and receptor modeling techniques were applied to obtain the different source contributions of the aerosols. Crustal, marine and anthropogenic sources were identified. The anthropogenic elements have origin mainly in the area close to the sampling site (<5 km), with the exception of Ca and V. A direct relationship was observed between the anthropogenic atmospheric aerosol concentrations and wind speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号