首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We have recently proposed a protocol for retrieving multidimensional magnetic resonance spectra and images within a single scan, based on a spatial encoding of the spin interactions. The spatial selectivity of this encoding process also opens up new possibilities for compensating magnetic field inhomogeneities; not by demanding extreme uniformities from the B(0) fields, but by compensating for their effects at an excitation and/or refocusing level. This potential is hereby discussed and demonstrated in connection with the single-scan acquisition of high-definition multidimensional images. It is shown that in combination with time-dependent gradient and radiofrequency manipulations, the new compensation approach can be used to counteract substantial field inhomogenities at either global or local levels over relatively long periods of time. The new compensation scheme could find uses in areas where heterogeneities in magnetic fields present serious obstacles, including rapid studies in regions near tissue/air interfaces. The principles of the B(0) compensation method are reviewed for one- and higher-dimensional cases, and experimentally demonstrated on a series of 1D and 2D single-scan MRI experiments on simple phantoms.  相似文献   

2.
We have recently demonstrated that the spatial encoding of internal nuclear magnetic resonance (NMR) spin interactions can be exploited to collect multidimensional NMR spectra within a single scan. Such experiments rely on an inhomogeneous spatial excitation of the spins throughout the sample, and lead to indirect-domain peaks via a constructive interference among the spatially resolved spin-packets that are thus created. The shape of the resulting indirect-domain echo peaks approaches a Sinc function when the chemical's distribution is uniform, but will depart from this function otherwise. It is hereby shown that a Fourier analysis of either the diagonal- or the cross-peaks resolved in these single-scan two-dimensional (2D) NMR experiments can in fact provide a weighted spatial distribution of the analyte originating such peak, thus opening up the possibility of completing spatially resolved multidimensional NMR measurements within a fraction of a second. Principles of this new mode of analysis are discussed, and examples where the potential of spatially resolved ultrafast 2D NMR spectroscopy is brought to bear are presented. Potential extensions of this approach to higher dimensions are also briefly addressed.  相似文献   

3.
An approach that enables the acquisition of multidimensional NMR spectra within a single scan has been recently proposed and demonstrated. The present paper explores the applicability of such ultrafast acquisition schemes toward the collection of two-dimensional magnetic resonance imaging (2D MRI) data. It is shown that ideas enabling the application of these spatially encoded schemes within a spectroscopic setting, can be extended in a straightforward manner to pure imaging. Furthermore, the reliance of the original scheme on a spatial encoding and subsequent decoding of the evolution frequencies endows imaging applications with a greater simplicity and flexibility than their spectroscopic counterparts. The new methodology also offers the possibility of implementing the single-scan acquisition of 2D MRI images using sinusoidal gradients, without having to resort to subsequent interpolation procedures or non-linear sampling of the data. Theoretical derivations on the operational principles and imaging characteristics of a number of sequences based on these ideas are derived, and experimentally validated with a series of 2D MRI results collected on a variety of model phantom samples.  相似文献   

4.
Fast and quiet MRI using a swept radiofrequency   总被引:1,自引:0,他引:1  
A novel fast and quiet method of magnetic resonance imaging (MRI) is introduced which creates new opportunities for imaging in medicine and materials science. The method is called SWIFT, sweep imaging with Fourier transformation. In SWIFT, time-domain signals are acquired in a time-shared manner during a swept radiofrequency excitation of the nuclear spins. With negligible time between excitation and signal acquisition, new possibilities exist for imaging objects consisting of spins with extremely fast transverse relaxation rates, such as macromolecules, semi-solids, and quadrupolar nuclei. The field gradient used for spatial-encoding is not pulsed on and off, but rather is stepped in orientation in an incremental manner, which results in low acoustic noise. This unique acquisition method is expected to be relatively insensitive to sample motion, which is important for imaging live objects. Additionally, the frequency-swept excitation distributes the signal energy in time and thus dynamic range requirements for proper signal digitization are reduced compared with conventional MRI. For demonstration, images of a plastic object and cortical bone are shown.  相似文献   

5.
An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting “hybrid” imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T2* effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T2 contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.  相似文献   

6.
A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa-n-butoxy naphthalocyanine (LiNc–BuO) probe using an L-band EPR spectrometer.  相似文献   

7.
8.
We have used the large gradients generated near the ferromagnetic tip of a magnetic resonance force microscope to locally suppress spin diffusion in a silica sample containing paramagnetic electron spins. By controlling the slice location with respect to the tip, the magnetic field gradient was varied from 0.01 to 36 mT/microm, resulting in a fourfold decrease in T-11 and a similar decrease in T(-1)(1 rho). The observed dependence of the relaxation rates on field gradient is consistent with the quenching of flip-flop interactions that mediate the transport of magnetization between slow and fast relaxing spins.  相似文献   

9.
In U-shaped, hand-size magnetic resonance surface scanners, imaging is performed along only one spatial direction, with the application of just one gradient (one-dimensional imaging). Lateral spatial resolution can be obtained by magnet displacement, but, in this case, resolution is very poor (on the order of some millimeters) and cannot be useful for high-resolution imaging applications. In this article, an innovative technique for acquisition and reconstruction of images produced by U-shaped, hand-size MRI surface scanners is presented. The proposed method is based on the acquisition of overlapping strips and an analytical reconstruction technique; it is capable of arbitrarily improving spatial lateral resolution without either using a second magnetic field gradient or making any assumptions about the imaged sample extension. Numerical simulations on synthetic images are reported demonstrating the method functionalities. The presented method also makes it possible to use U-shaped, hand-size MRI surface scanners for high-resolution biomedical applications, such as the imaging of skin lesions.  相似文献   

10.
The diffusion behaviors of spins in the presence of distant dipolar field in two-component spin systems during the second evolution period of a modified CRAZED sequence before acquisition were investigated. Theoretical formulas were deduced based on the distant dipolar field model. The simulation results and experimental observations are consistent with the theoretical predictions. This study shows that the relative intensities of signals from intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) have the same diffusion attenuation characteristic under the combined effect of diffusion weighting gradients and distant dipolar field during the second evolution period. This diffusion attenuation may be different from that of conventional single-quantum coherence signal, depending on the relative orientation of the diffusion weighting gradients to the coherence selection gradients. The results presented herein are helpful for understanding the effect of distant dipolar field from a spin system on the diffusion behavior of other spin system and the signal properties in the iZQC or iDQC magnetic resonance imaging.  相似文献   

11.
叙述了一个L波段(1.05 GHz)用于ESR和ESR成像的装置,用这套自制装置实现了3D ESR成像. 该装置由L波段ESR谱仪、三组梯度场线圈及控制单元和PC机数据采集系统组成. 样品腔是一个3-环2-缝再进入式谐振腔,可放入直径为20 mm、 长30 mm的H2O样品,空谐振腔的频率是1.05 GHz. 微波振荡频率用自动频率控制(AFC)的方法自动锁在有载腔的频率上. 梯度场线圈沿X-,Y-和Z-轴产生线性梯度场,在中心40 mm球形范围内梯度场强度为2 mT/cm. 依照Lauterbur's方法进行3D ESR 图像重建. 用该系统检测了样品中TEMPO氮氧自由基的3D空间分布. 得到了TEMPO的2D、3D ESR图像、用像素灰度表示的自旋密度分布图及3D ESR-CT图像.  相似文献   

12.
We present an imaging technique utilizing a neutron spin interferometer. Neutron spin phase contrast is achieved in spatial resolved measurements of the phase difference between two superposed neutron spin states introduced by passing through a magnetic sample. Since the phase difference of spin states parallel and anti-parallel to the magnetic field is proportional to the magnetic field integral, it is possible to record images of the internal magnetic field distribution of the sample. Taking advantage of high transmission probabilities, neutron spin phase contrast provides non-destructive images of internal magnetic structures.  相似文献   

13.
Recent studies have demonstrated the ability to detect images based on intermolecular multiple-quantum coherences (iMQCs) that correspond to flipping of two or more separated spins simultaneously, as opposed to conventional magnetic resonance where only one spin is flipped at a time. Until now, iMQC imaging has only acquired one coherence signal per pulse sequence. Here we report a new sequence that successfully detects five orders of coherence (2, 1, 0, −1, and −2-quantum coherence images) in one pulse sequence, with each signal having its full intensity. The simultaneous acquisition highlights substantial contrast differences between conventional and iMQC images, and between the different types of iMQC images.  相似文献   

14.
There has been much recent interest in extending the technique of magnetic resonance imaging (MRI) down to the level of single spins with sub-optical wavelength resolution. However, the signal to noise ratio for images of individual spins is usually low and this necessitates long acquisition times and low temperatures to achieve high resolution. An exception to this is the nitrogen-vacancy (NV) color center in diamond whose spin state can be detected optically at room temperature. Here we apply MRI to magnetically equivalent NV spins and demonstrate fully resolved spectra with resolution well below the optical wavelength of the readout light. In addition, using a microwave version of MRI we achieved a resolution that is 1/270 in size of the coplanar striplines, which define the effective wavelength of the microwaves that were used to excite the transition. This technique can eventually be extended to imaging of large numbers of NVs in a confocal spot and possibly to image nearby dark spins via their mutual magnetic interaction with the NV spin.  相似文献   

15.
For spins localized in a conductive sample the shape of the magnetic resonance spectrum is calculated in the presence of a linear gradient of the constant magnetic field. It is shown that the shape of the spectrum depends on the sign of the gradient. This result allows one to interpret an experimentally observed inequality of intensities of spectra which arise from skin layers on opposite sides of a sample when a linear gradient is applied across a sample with a given thickness. Results of this work will be helpful when the magnetic resonance imaging methods are used in studying conductive systems.  相似文献   

16.
Continuous wave electron paramagnetic resonance imaging for in vivo mapping of spin distribution and spectral shape requires rapid data acquisition. A spectral-spatial imaging technique is presented that provides an order of magnitude reduction in acquisition time, compared to iterative tomographic reprojection. The proposed approach assumes that spectral shapes in the sample are well-approximated by members from a parametric family of functions. A model is developed for the spectra measured with magnetic field modulation. Parameters defining the spin distribution and spectral shapes are then determined directly from the measurements using maximum a posteriori probability estimation. The approach does not suffer approximation error from limited sweep width of the main magnetic field and explicitly incorporates the variability in signal-to-noise ratio versus strength of magnetic field gradient. The processing technique is experimentally demonstrated on a one-dimensional phantom containing a nitroxide spin label with constant g-factor. Using an L-band EPR spectrometer, spectral shapes and spin distribution are accurately recovered from two projections and a spectral window which is comparable to the maximum linewidth of the sample.  相似文献   

17.
ESR microscopy     
New spatial imaging methods to determine the microscopic concentration of unpaired electron spins or paramagnetic ions (ESR microscopy methods) have been developed (a) with an intense magnetic field gradient method based on conventional magnetic resonance imaging (MRI) using field gradient coils in a cavity, (b) by scanning the localized magnetic field or modulation field mechanichally or electronically, and (c) by use of the scanning localized microwave field. Some examples of fossil imaging and of microdosimetry in this laboratory are reviewed briefly.  相似文献   

18.
Electron paramagnetic resonance imaging (EPRI) provides direct detection and mapping of free radicals. The continuous wave (CW) EPRI technique, in particular, has been widely used in a variety of applications in the fields of biology and medicine due to its high sensitivity and applicability to a wide range of free radicals and paramagnetic species. However, the technique requires long image acquisition periods, and this limits its use for many in vivo applications where relatively rapid changes occur in the magnitude and distribution of spins. Therefore, there has been a great need to develop fast EPRI techniques. We report the development of a fast 3D CW EPRI technique using spiral magnetic field gradient. By spiraling the magnetic field gradient and stepping the main magnetic field, this approach acquires a 3D image in one sweep of the main magnetic field, enabling significant reduction of the imaging time. A direct one-stage 3D image reconstruction algorithm, modified for reconstruction of the EPR images from the projections acquired with the spiral magnetic field gradient, was used. We demonstrated using a home-built L-band EPR system that the spiral magnetic field gradient technique enabled a 4-7-fold accelerated acquisition of projections. This technique has great potential for in vivo studies of free radicals and their metabolism.  相似文献   

19.
Chemical shift imaging (CSI) relies on a strong and homogeneous main field. Field homogeneity ensures adequate coherence between the precessions of individual spins within each voxel. Variation of field strength between different voxels causes geometric distortion and intensity variation in chemical shift images, resulting in errors when analyzing the spatial distribution of specific chemical compounds. A post-processing method, based on detection of the spectral peak of water and baseline subtraction with Lorentzian functions, was developed in this study to automatically correct spectra offsets caused by field inhomogeneity, thus enhancing the contrast of the chemical shift images. Because this method does not require prior field plot information, it offers advantages over existing correction methods. Furthermore, the method significantly reduces geometric distortion and enhances signals of chemical compounds even when the water suppression protocol was applied during the CSI data acquisition. The experimental results of the water and glucose phantoms showed a considerable reduction of artifacts in the spectroscopic images when this post-processing method was employed. The significance of this method was also demonstrated by an analysis of the spatial distributions of sugar and water contents in ripe and unripe bananas.  相似文献   

20.
Carr-Purcell-Meiboom-Gill train of radiofrequency pulses applied to spins in the constant magnetic field gradient is an efficient variant of the modulated magnetic field gradient spin echo method, which provides information about molecular diffusion in the frequency-domain instead in the time-domain as with the two-pulse gradient spin echo. The frequency range of novel technique is broad enough to sample the power spectrum of displacement fluctuation in water-saturated pulverized silica (SiO(2)) and provides comprehensive information about the molecular restricted motion as well as about the structure of medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号