首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   3篇
化学   3篇
物理学   9篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
在Bruker ER 200D ESR 谱仪上安装一套自制的谱-空间2D ESR成像系统,这套系统由一对梯度场线圈、电源、微机及图像重建程序组成. 用滤波反投影图像重建方法,实现了两种自由基样品的谱-空间2D ESR成像,由2D 图像得到样品中自由基的自旋密度空间分布及相应的波谱参数. 讨论了成像参数与图像精度的关系.  相似文献   
2.
实验确定了自行研制的L波段三维电子自旋共振成像(3D-ESRI)系统的检测灵敏度及成像分辨率指标. 用Tempo水溶液模型测量灵敏度结果表明: 样品体积为10 mm, 高30 mm,测量浓度1×10-4 mol/L水溶液的信噪比为S/N=4∶1;加梯度磁场后,样品浓度需>5×10-4 mol/L,样品体积为19 mm, 高30 mm时,获得的投影谱的信噪比可满足图像重建的需要. 用DPPH固体样品确定的成像分辨率结果<1 mm. 文中还对ESRI系统的
各项总体性能做了归纳总结.  相似文献   
3.
研究并实现了L波段电子自旋共振三维成像(3D-EPRI)专用的三维梯度磁场系统,主磁场及扫描磁场系统以及相应的驱动控制系统. 梯度场线圈采用在铜板上用电切割方法加工的 平板式线圈,避免了用铜导线绕制线圈体积较大的缺点,从而缩小了主磁场的体积和极间距 . 梯度场强度在三维方向上均达到200 mT/m,驱动电流为20 A. 三维空 间线性度均优于5%;线性区域大于直径42 mm的球形空间. 两磁极间距离为63 mm,可以容纳通常体积的L波段谐振腔. 主磁场和扫描场线圈固定在同一轭铁架上. 它们可分别产生1.6~ 96 mT和0.2~16 mT的线性变化磁场. 5组磁场线圈(包括主磁场, 扫描磁场和三维梯度磁场)分别由5台独立的恒流驱动电源控制驱动. 电源通过数据接口由计算机控制. 初步成像实 验证明本工作所建立的磁场和梯度磁场系统可以用于EPRI实验.  相似文献   
4.
5.
在L波段三维ESR成像系统的研制中,以Matlab 为平台,建立了包括谱数据自动化处理、ESR空间(1D、2D、3D)成像和ESR谱-空间成像为一体的系统应用软件,可方便清晰地显示谱和物体自旋密度分布的各种图像,为深入研究顺磁性物种自旋密度分布的特征及其化学反应过程中氧的扩散过程,提供了很好的可视化信息. 实验表明,该系统软件具有广泛的应用前景.  相似文献   
6.
通过扩散系数的测量,可以了解高分子聚合反应整个过程的机理,进而控制聚合反应的进程。但能够测量高分子聚合过程中自扩散系数变化的仪器并不多。当前,加脉冲梯度场的自旋回波法被认为是最为有效和实用的方法,此项研究围内尚未报道。  相似文献   
7.
用磁共振方法实现自旋分布成像是Lauterbur和1973年首先提出来的,经过十几年时间,核磁成像已经在医学临床上得到广泛的应用,从原理上看,将NMR成像移植到ESR成像似乎是顺理成章的事,但由于ESR在实验技术上和NMR之间存在着很大差别,因此直到1979年才实现此方法,近年来,由于克服了理论和实验的一系列困  相似文献   
8.
描述了一个用于生物样品L波段ESR成像用的谐振腔,讨论了在制作、设计过程中几个值得注意的问题,该腔为3-环2-裂缝再进入式谐振腔,可检测直径为20 mm长30 mm的H2O样品. 空腔的共振频率为1.05 GHz. 腔的Q值是样品中水含量的函数,无载Q大于1 000. 用插入侧臂的耦合环得到谐振腔与微波桥之间的匹配,确定了耦合环直径的最佳值,对无载腔其值约为腔臂直径的1/3,而对有载腔其值约等于腔臂的直径. 用该腔检测了样品中TEMPO氮氧自由基的空间分布.  相似文献   
9.
研究并实现了L波段电子自旋共振三维成像(3D-EPRI)专用的三维梯度磁场系统, 主磁场及扫描磁场系统以及相应的驱动控制系统. 梯度场线圈采用在铜板上用电切割方法加工的平板式线圈, 避免了用铜导线绕制线圈体积较大的缺点, 从而缩小了主磁场的体积和极间距. 梯度场强度在三维方向上均达到200 mT/m, 驱动电流为20 A. 三维空间线性度均优于5%; 线性区域大于直径42 mm的球形空间. 两磁极间距离为63 mm, 可以容纳通常体积的L波段谐振腔. 主磁场和扫描场线圈固定在同一轭铁架上. 它们可分别产生1.6~96 mT和0.2~16 mT的线性变化磁场. 5组磁场线圈(包括主磁场, 扫描磁场和三维梯度磁场)分别由5台独立的恒流驱动电源控制驱动. 电源通过数据接口由计算机控制. 初步成像实验证明本工作所建立的磁场和梯度磁场系统可以用于EPRI实验.  相似文献   
10.
自旋回波法测量弛豫时间   总被引:3,自引:2,他引:1  
本文报导利用我们自己研制的ZHP—1型自旋回波谱仪测量弛豫时间的有关问题,目的是为了在近代物理实验中让学生: (1) 了解脉冲核磁共振的基本实验装置和基本物理思想,学会用经典矢量模型方法解释脉冲核磁共振中的一些物理现象;  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号