首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
Separated Flow and Buffeting Control   总被引:2,自引:0,他引:2  
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and the flow separations on the upper wing surfaces of civil aircraft induce flow instabilities, ‘buffet’ and then structural vibrations, ‘buffeting’. Buffeting can greatly affect aerodynamic behavior. The buffeting phenomenon appears when the aircraft's Machnumber or angle of attack increases. This phenomenon limits the aircraft's flight envelope. The objectives of this study are to cancel out or decrease the aerodynamic instabilities (unsteady separation, movement of the shock position) due to this type of flow by using control systems. The following actuators can be used: ‘Vortex Generators’ situated upstream of the shock position, a ‘Bump’ located at the shock position, and a new moving part designed by ONERA, situated on the trailing edge of the wing, the ‘Trailing Edge Deflector’ or TED. It looks like an adjustable ‘Divergent Trailing Edge’. It is an active actuator and can take different deflections or be driven by dynamic movements up to 250 Hz. Tests were performed in transonic 2D flow with models well equipped with unsteady pressure transducers. For high lift coefficients, a selected static position of the ‘Trailing Edge Deflector’ increases the wing's aerodynamic performances and delays the onset of buffet. Furthermore, in 2D flow buffet conditions, the ‘Trailing Edge Deflector’, driven by a closed-loop active control using the measurements of the unsteady wall static pressures, can greatly reduce buffet. The aerodynamic performances are not improved to the same extent by the bump actuator. From our experience, there is no effect on buffet or separated flow because of the incorrect positioning of the bump. All that can be observed is a local improvement on the intensity of the shock wave when the bump is very precisely situated at the shock position. Vortex generators have a great impact on the separated flow. The separated flow instabilities are greatly reduced and buffet is totally controlled even for strong instabilities. The aerodynamic performances of the airfoil are also greatly improved.  相似文献   

2.
SBLI control for wings and inlets   总被引:5,自引:0,他引:5  
Flow control can be applied to shock wave/boundary layer interactions to achieve two different goals;the delay of shock-induced separation and/or the reduction ofstagnation pressure losses, which cause wave drag or inletinefficiencies. This paper introduces the principles and maintechniques for both approaches and assesses their relativesuitability for practical applications. While boundary layersuction is already in wide use for separation control, themost promising novel device is the micro-vortex generator,which can deliver similar benefits to traditional vortex generatorsat much reduced device drag. Shock control is notyet used on practical applications for a number of reasons,but recent research has focused on three-dimensional deviceswhich promise to deliver flow control with improved offdesignbehaviour. Furthermore, there are some indicationsthat a new generation of control devices may be able to combinethe benefits of shock and boundary layer control andreduce shock-induced stagnation pressure losses as well asdelay shock-induced separation.  相似文献   

3.
王玉玲  高超  王娜 《实验力学》2016,31(3):386-392
飞行器抖振是一种非线性气动弹性问题,当飞行器进入抖振阶段时,将会对飞行器的性能产生严重影响。而在跨声速条件下,激波附面层相互作用会诱导机翼抖振。本文开展了跨声速条件下翼型抖振特性雷诺数效应的实验研究,揭示了翼型跨声速抖振起始迎角、激波运动前缘边界、频谱特性、抖振频率与雷诺数变化的基本规律。结论如下:雷诺数变化会导致抖振起始边界的改变,对抖振起始迎角下的功率谱密度峰值有明显影响;随着雷诺数的增大,激波运动的前缘后移。雷诺数变化对抖振频率有明显影响,随着马赫数增大,雷诺数效应增强。  相似文献   

4.
A time-accurate computational analysis of vertical tail buffeting of full F/A-18 aircraft is conducted at typical flight conditions to identify the buffet characteristics of fighter aircraft. The F/A-18 aircraft is pitched at wide range of high angles of attack at Mach number of 0.243 and Reynolds number of 11 millions. Strong coupling between the fluid and structure is considered in this investigation. Strong coupling occurs when the inertial effect of the motion of the vertical tail is fed back into the flow field. The aerodynamic flow field around the F/A-18 aircraft is computed using the Reynolds-averaged full Navier–Stokes equations. The dynamical structural response of the vertical tail is predicted using direct finite-element analysis. The interface between the fluid and structure is applied using conservative and consistent interfacing methodology. The motion of the computational grid due to the deflection of the vertical tail is computed using transfinite interpolation module. The investigation revealed that the vertical tail is subject to bending and torsional responses, mainly in the first modes of vibrations. The buffet loads increase significantly as the onset of vortex breakdown moves upstream of the vertical tails. The inboard surface of the vertical tail has more significant contribution in the buffet excitation than the outboard surface. In addition, the pressure on the outboard surface of the vertical tail is less sensitive to the angle of attack than the pressure on the inboard surface. The buffet excitation peaks shift to lower frequency as the angle of attack increases. The computational results are compared, and they are in close agreement, with several flight and experimental data.  相似文献   

5.
The robustness of vane-type vortex generators (VGs) for separation flow control was studied in a separating turbulent boundary layer on a flat plate. VG arrays of different sizes and streamwise positions were positioned upstream of the separation bubble and their effect on the flow field was studied with the help of particle image velocimetry (PIV). The extent of the separated region was varied by changing the pressure gradient. Three different separation bubbles were produced and their extent was approximately doubled for each increase in pressure gradient. It was found that the sensitivity of the control effect to changes in the size of the separation bubble is small within the applied range of pressure gradients. Furthermore, the importance of the relative position of the VGs with respect to the separated region is small.  相似文献   

6.
In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429–434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoïdal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoïdal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is ?12%, while the maximum global lift reduction can reach more than ?60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (?104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to ?14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices. It demonstrates that for low aspect ratio 3D bluff-bodies, like road vehicles, the flow control strategy is much different from the one used on airfoils: an early separation of the boundary layer can lead to a significant drag reduction if the circulation of the trailing vortices is reduced.  相似文献   

7.
Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave–boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 × 106 are analyzed regarding the origin and nature of the unsteady shock–boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa.  相似文献   

8.
Experiments on an axisymmetric dual-bell nozzle were performed at EDITH nozzle test facility of CNRS in Orléans, France. The main purpose of the study was to explore the possibility of controlling the flow regime transition by a secondary fluidic injection in the dual bell nozzle. The main focus of the present paper is to investigate the impact of the secondary injection parameters on the flow regimes transition in such nozzles. Secondary injection has been found to effectively control the flow regime transition and consequently to increase the propulsive performance of the device. It has also been pointed out that even a very low injected secondary mass flow rate leads to the control of the transition and contributes to reducing the lateral loads which can exist, moreover, when transitions are operated without injection.  相似文献   

9.
Unsteady transonic flow past a two-dimensional airfoil with heat and momentum addition is numerically investigated. The flow analysis is based on the solution of the unsteady Reynolds equations closed by the k-ω SST turbulence model. The equations are integrated using the finite volume method. Several positions and shapes of the heat and momentum addition zones are considered for the purpose of determining an optimal means for controlling buffet. It is established that the most considerable variations in the buffet parameters are achieved when heat addition and mechanical action are realized on the upper wing surface. The thermal energy supply always increases the buffet frequency, while the mechanical action can both increase and reduce it.  相似文献   

10.
包覆电磁场激活板的圆柱尾迹的数值研究   总被引:19,自引:3,他引:19  
陈志华  范宝春 《力学学报》2002,34(6):978-983
利用电磁场作用于电介质溶液的Lorentz力可以控制溶液的流动.对置于弱电介质溶液中,包覆电磁场激活板的圆柱周围的绕流进行数值研究,讨论了电磁场激活板的安装位置,激活方式等对圆柱尾迹的影响.  相似文献   

11.
陈勇  陶宝祺  高亹 《实验力学》2000,15(4):441-447
飞机局部复合材料构件存在着因涡流作用诱发的弹性振动问题。本文首先研究了表面粘贴型压电元件对复合材料构件的传感和驱动原理;针对结构待控模态的要求,采用了D-准则优化确定同位压电传感/驱动器在构件中的布置方案;应用自适应振动前馈控制原理和方法,构造了闭环控制系统;分别利用正弦和方波信号激发气动声场,对玻纤/环氧圆筒构件进行激振和振动控制实验;结果表明:构件主要待控模态的振动得到了有效抑制,但也出现了高阶模态被激发的问题,导致结构辐射噪声上升。  相似文献   

12.
针对可能呈现混沌性态的连续动力学,提出了一种参数开闭环控制方案。以控制Lorenz混沌为例说明该方案的应用。讨论了参数开闭环控制与输送控制、参数输送控制及开闭环控制之间的关系。  相似文献   

13.
本文提出一种确定跨音速后掠翼抖振边界的数值计算方法,现有的确定跨音速翼型抖振边界的F.Thomas 准则被推广到包括具有大后掠角的后掠翼,计算是对侧滑翼进行,其中用积分法对三维可压缩湍流边界层的计算是根据本文作者听发展的方法,对于跨音速压强分布是利用A.Eberle的解全速位方程的有限元素法给出,按本文方法计算出F-86A 飞机的抖振边界与相同雷诺数下飞行试验所得结果符合得很好。  相似文献   

14.
张书  卢玉斌 《实验力学》2015,30(3):313-321
准一维应变状态测试技术对混凝土等脆性材料的力学性能研究具有重要意义,而目前准一维应变实验装置设计单一、互换性较差,所以无法实现普及。针对上述情况,本文在套管围压装置的基础上进行叠加式设计与组合式分离设计,旨在建立一套结构简单、适用性广的准静态被动围压装置。基于数值模拟方法,本文对混凝土试样在一维应变状态与套管围压作用下的力学特性进行研究,从而分析混凝土试样在套管装置下能达到一维应变状态的程度;同时,对叠加式套管与整体式套管的性能进行比较,发现叠加式套管理论上能在准一维应变实验中很好地代替整体式套管。组合式分离设计的有效性最终通过相关实验得到验证。  相似文献   

15.
飞机结构气动弹性分析与控制研究   总被引:7,自引:0,他引:7  
随着主动控制技术的发展,飞机结构设计理念已由提高结构刚度的被动设计转变为随控布局的主动设计.主动设计理念不再刻意回避气动弹性问题,而是采用主动控制技术实时调节结构气动弹性,进而减轻结构重量、优化飞机性能. 在飞机随控布局主动设计中,必须深入分析结构与气流之间的耦合,才能更好发挥气动弹性主动控制技术的作用. 从20 世纪80 年代起,航空科技界对该问题进行了长期研究,对飞机结构-空气动力-主动控制相互耦合后的关键力学问题有了深入理解. 然而,已有研究多基于简化模型,导致研究结果难以直接应用于工程. 本文将针对气动弹性动态问题,综述空气动力非线性、控制面间隙非线性、时滞诱发失稳、颤振主动抑制、突风载荷减缓、风洞实验验证等方面的国内外研究进展,重点介绍近年来作者团队所提出的若干方法及相关算例和风洞实验. 最后,指出今后一个时期值得研究的若干气动弹性分析与控制问题.   相似文献   

16.
《Comptes Rendus Mecanique》2014,342(6-7):349-355
This experimental study deals with wake-flow fluidic control behind a two-dimensional square back geometry positioned close to the ground. The fluidic control system is made of pulsed jets positioned at the upper edge of the model base. The objective of the fluidic action is to modify the wake-flow development, and as a consequence the static pressure distribution over the model base and hence the pressure drag. The main concern of this study is to determine to what extent the presence of a flow confined between the model and the floor influences the effectiveness of the control. Static pressure measurements at the model base and wake-flow characteristics derived from PIV measurements at a high acquisition frequency indicate global similarities between a case where an underbody flow exists and a case where this underbody flow is absent. For low actuation frequencies, discrepancies in the way the coherent structures due to the control develop in the shear layer appear.  相似文献   

17.
High-performance aircraft often suffer from the consequences of tail buffeting at moderate subsonic Mach numbers and medium to high angles of attack. The impact of the aircraft’s highly unsteady flow field on the tails can result in significant structural fatigue and degraded handling qualities. Various methods have been developed to predict tail buffeting. Stochastic response methods are among frequently used approaches. For such methods the size of the excitation data set can become an issue, especially when the auto- and cross-spectra of all available excitation signals on the configuration are considered. The present paper demonstrates how to modify stochastic tail buffeting prediction methods using Proper Orthogonal Decomposition (POD). The approach is based on the modal decomposition of the aerodynamic buffet excitation data set. It notably reduces the computational effort for structural response and loads prediction with limited losses in accuracy while using all power- and cross-spectra of the reduced dataset. The method was applied to the computational buffeting prediction for a generic configuration with double-delta wing and horizontal tail plane (HTP) over a wide range of angles of attack. It was shown that the POD-modes of the aerodynamic buffet excitation resembled the characteristics of configuration’s complex vortical flow field. The predicted structural response and loads converged well with increasing number of POD-modes. With the presented approach, the computational effort of stochastic tail buffeting prediction has been reduced by orders of magnitude compared to the case with the full aerodynamic buffet excitation data set.  相似文献   

18.
Tube bank fin heat exchanger is one of the most compact heat exchangers, and it is widely used in industry equipments. The flat tube bank fin heat exchangers with vortex generators (VGs) have significant good heat transfer performance, and are used as radiators of locomotive. Here, we study heat transfer enhancement of a new fin where VGs are mounted on both surfaces of the fin. The heat transfer performance of this pattern is evaluated by a numerical method, and the results are compared with those obtained, under identical mass flow rate, when the VGs are mounted only on one surface of the fin. The results reveal that using this new pattern the height of VGs can be reduced and still obtain satisfactory heat transfer enhancement, while the pressure drop is reduced. The results also reveal that if VGs on one surface of the fin is determined, the locations where VGs are mounted on other surface of the same fin are very important, with configurations studied in this paper, depending on the value of Reynolds number, there exists an optimum location with which best heat transfer performance can be obtained.  相似文献   

19.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

20.
Described in this paper is a six-legged Stewart-Gough parallel platform driven by a relatively new type of fluidic muscles. The advantage of the platform is that it is virtually free of stick-slip effects. Thus, the device is well-suited for fine-tuned force control and for physical simulation of virtual force-displacement laws. The legs of the platform are of type RRPS and are equipped with a coaxial coil spring and a fluidic muscle providing push and pull forces. Each leg is equipped with a force sensor, a pressure sensor, and a magnetostrictive position encoder. The control for the platform consists of six control loops for the six operated actuators with model-based force control comprising individual gas models as well as the rubber nonlinearities for each leg. The control law also includes the gas flow in the proportional directional control valve in 3/3-way function. The present paper describes the basic architecture of the platform, the dynamic models, as well as testbed results for the existing fluidic-muscle parallel platform DynaHex. It is shown that the presented control scheme leads to a stable force control of the platform for quasi-static motion. As an application, the device will be employed in fields of biomechanics, as well as in general environments requiring physical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号