首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unsteady Couette–Poiseuille flow of an electrically conducting incompressible non-Newtonian viscoelastic fluid between two parallel horizontal non-conducting porous plates is studied with heat transfer considering the Hall effect. A sudden uniform and constant pressure gradient, an external uniform magnetic field that is perpendicular to the plates and uniform suction and injection through the surface of the plates are applied. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are taken into consideration. Numerical solutions for the governing momentum and energy equations are obtained using finite difference approximations. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions is examined.  相似文献   

2.
The steady flow of an incompressible viscous non-Newtonian fluid above an infinite rotating porous disk in a porous medium is studied with heat transfer. A uniform injection or suction is applied through the surface of the disk. Numerical solutions of the non-linear differential equations which govern the hydrodynamics and energy transfer are obtained. The effect of the porosity of the medium, the characteristics of the non-Newtonian fluid and the suction or injection velocity on the velocity and temperature distributions is considered. The inclusion of the three effects, the porosity, the non-Newtonian characteristics, and the suction or injection velocity together has shown some interesting effects.  相似文献   

3.
An unsteady free convective flow through porous media of viscous, incompressible, electrically conducting fluid through a vertical porous channel with thermal radiation is studied. A magnetic field of uniform strength is applied perpendicular to the vertical channel. The magnetic Reynolds number is assumed very small so that the induced magnetic field effect is negligible. The injection and suction velocity at both plates is constant and is given by v 0. The pressure gradient in the channel varies periodically with time along the axis of the channel. The temperature difference of the plates is high enough to induce the radiative heat. Taking Hall current and Soret effect into account, equations of motion, energy, and concentration are solved. The effects of the various parameters, entering into the problem, on velocity, temperature and concentration field are shown graphically.  相似文献   

4.
A three dimensional steady fully developed MHD Couette flow of a viscous incompressible electrically conducting fluid is analysed. The lower stationary porous plate is subjected to a periodic injection velocity and the upper porous plate in uniform motion to a constant suction velocity. A magnetic field of uniform strength applied normal to the planes of the plates is fixed with the moving plate. Neglecting the induced magnetic field, an approximate solution for the flow field is obtained and discussed with the help of graphs.  相似文献   

5.
A three dimensional steady fully developed MHD Couette flow of a viscous incompressible electrically conducting fluid is analysed. The lower stationary porous plate is subjected to a periodic injection velocity and the upper porous plate in uniform motion to a constant suction velocity. A magnetic field of uniform strength applied normal to the planes of the plates is fixed with the moving plate. Neglecting the induced magnetic field, an approximate solution for the flow field is obtained and discussed with the help of graphs.  相似文献   

6.
The influence of temperature dependent viscosity and thermal conductivity on the transient Couette flow with heat transfer is studied. An external uniform magnetic field is applied perpendicular to the parallel plates and the Hall effect is taken into consideration. The fluid is acted upon by a constant pressure gradient. The two plates are kept at two constant but different temperatures and the viscous and Joule dissipations are considered in the energy equation. A numerical solution for the governing non-linear equations of motion and the energy equation is obtained. The effect of the Hall term and the temperature dependent viscosity and thermal conductivity on both the velocity and temperature distributions is examined.  相似文献   

7.
The unsteady flow of a viscous conducting fluid due to the rotation of an infinite, non-conducting, porous disk in the presence of an axial uniform steady magnetic field is studied without neglecting the Hall effect. The fluid is acted upon by a uniform injection or suction through the disk. The relevant equations are solved numerically with a special technique to resolve the conflict between the initial and boundary conditions. The solution shows that the inclusion of the injection or suction through the surface of the disk in addition to the Hall current gives some interesting results.  相似文献   

8.
This work investigates entropy generation in a steady flow of viscous incompressible fluids between two infinite parallel porous plates. The fluid temperature variation is due to asymmetric heating of the porous plates as well as viscous dissipation. Two different physical situations are discussed with their entropy generation profiles: (i) Couette flow with suction/injection and (ii) pressure-driven Poiseuille flow with suction/injection. In each case, closed form expressions for entropy generation number and Bejan number are derived in dimensionless form by using the expressions for velocity and temperature which are derived by solving the resulting momentum and energy equations by the method of undetermined coefficient. The effect of the governing parameters on velocity, temperature, entropy generation and Bejan number are extensively discussed with the help of graphs. It is interesting to remark that entropy generation number increases with suction on one porous plate while it decreases on the other porous plate with injection.  相似文献   

9.
The problem of incompressible, electrically conducting viscous laminar flow between two non-conducting coaxial discs is studied, in the presence of transverse magnetic field of uniform intensity, when there is constant injection or suction at the discs. The problem is interesting both mathematically and physically. The solution, for small suction or injection, has been obtained for highly viscous fluid. The velocity profiles have also been drawn graphically.  相似文献   

10.
根据有旋特征线理论,设计出了沿程马赫数下降规律可控的轴对称基准流场,分析了基准流场的几何参数(前缘压缩角及中心体半径)的影响规律,发现选取较小的前缘压缩角和中心体半径有利于得到性能优良的基准流场;然后在设计状态Ma=6时研究了三种典型的马赫数下降规律对这种轴对称流场性能的影响。最后考虑了粘性的影响,并进行了粘性修正探索,结果表明,采用附面层位移厚度修正方法后,基准流场的壁面压力分布和无粘情况吻合良好。   相似文献   

11.
PART A: The unsteady viscous incompressible flow between two parallel flat plates with suction and injection in presence of a pressure gradient is studied. PART B: An exact solution for temperature distribution at different constant wall temperatures is obtained. It is assumed that the rate of injection at the lower plate equals the rate of suction at the upper plate.  相似文献   

12.
A viscous incompressible fluid between two plane boundaries is stratified by maintaining the planes at different temperatures. The upper plane moves with a uniform velocity. The suction/injection mechanism with constant injection velocity at the upper plane and suction velocity varying sinusoidally along the lower plane with a wave numberk is introduced at the boundaries. The steady linearised equations are solved using similarity variables for the velocity components. The wave numberk is shown to be effective in controlling the boundary layer thickness.  相似文献   

13.
The two-dimensional unsteady flow of a conducting viscous incompressible fluid past, an infinite flat plate with uniform suction, is considered in the presence of a uniform magnetic field. For a constant time, it is shown that for a given Hartmann numbera, as the cross Reynolds number β (corresponding to the suction velocity of the plate) increases, the velocity at any point of the fluid decreases and the skin friction at the plate increases. The results also hold good for a given β, asa increases if the magnetic lines of force are fixed relative to the fluid and are just opposite for the magnetic lines of force fixed relative to the plate.  相似文献   

14.
在固定的底板上有横向正弦射流,而匀速运动的多孔介质顶板以常速率完全抽出的情况下,理论分析了热幅射对三维Couette流动温度分布的影响.在这种射流速度下,流动呈现三维流动.利用图形分析了Prandtl数、幅射参数和射流参数对传热速率的影响.Prandtl数对温度分布的影响比射流参数或幅射参数大得多.  相似文献   

15.
Analytical solutions for heat and mass transfer by laminar flow of a Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously vertical permeable surface in the presence of a radiation, a first-order homogeneous chemical reaction and the mass flux are reported. The plate is assumed to move with a constant velocity in the direction of fluid flow. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Graphical results for velocity, temperature and concentration profiles of both phases based on the analytical solutions are presented and discussed.  相似文献   

16.
The problem of flow of an electrically conducting viscous liquid due to the time-varying motion of an infinite porous plate has been studied. There is a uniform magnetic field imposed transversely to the plate and the magnetic lines of force are taken to be fixed relative to the fluid. Exact solutions for the velocity field and the skin-friction have been obtained and some particular cases have been discussed. The effect of suction parameter and magnetic field strength on the flow characteristics have been depicted through several graphs and tables.  相似文献   

17.
This paper deals with the study of the MHD flow of non-Newtonian fluid on a porous plate. Two exact solutions for non-torsionally generated unsteady hydromagnetic flow of an electrically conducting second order incompressible fluid bounded by an infinite non-conducting porous plate subjected to a uniform suction or blowing have been analyzed. The governing partial differential equation for the flow has been established. The mathematical analysis is presented for the hydromagnetic boundary layer flow neglecting the induced magnetic field. The effect of presence of the material constants of the second order fluid on the velocity field is discussed.  相似文献   

18.
This work is focused on the mathematical modeling of three-dimensional Couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively, subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phases are obtained by solving the governing partial differential equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem.  相似文献   

19.
The two dimensional Couette flow of a non-homogeneous viscous fluid is studied. The plane boundaries of the channel are maintained at different temperatures. The upper plane moves with a uniform horizontal velocity and the lower plane is at rest. The fluid is subjected to suction and injection at the boundaries. Thesteady equations are solved by introducing similarity variables which are expanded in series of powers of a small stratification parameter. The non-linear theory predicts that the temperature depends on the distancex from the throat section, an observation which is not predicted by the linear theory. The non-linear effects on velocity and temperature are studied. The rate of heat transfer is discussed.  相似文献   

20.
This paper deals with the two-dimensional unsteady flow of a conducting viscous incompressible fluid between two parallel, porous plates, one of which is fixed, while the other is uniformly accelerated, when there is a transverse magnetic field. It is shown that, for a given Hartmann number M, as suction parameter β increases, the velocity at any point of the fluid increases, the Skin friction at the stationary plate increases, while that at the accelerated plate decreases. The results are true, as time T increases, for given Hartmann number M and the suction parameter β. The results also hold good for a given β, as M increases when the magnetic lines of force are fixed relative to the plate, while they are just opposite for the magnetic lines of force fixed relative to the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号