首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Glycosphingolipids including gangliosides play important regulatory roles in cell proliferation and differentiation. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyze the initial step in glycosphingolipids biosynthesis pathway. In this study, Ugcg expression was reduced to approximately 80% by short hairpin RNAs (shRNAs) to evaluate the roles of glycosphingolipids in proliferation and neural differentiation of mouse embryonic stem cells (mESCs). HPTLC/immunofluorescence analyses of shRNA-transfected mESCs revealed that treatment with Ugcg-shRNA decreased expression of major gangliosides, GM3 and GD3. Furthermore, MTT and Western blot/immunofluorescence analyses demonstrated that inhibition of the Ugcg expression in mESCs resulted in decrease of cell proliferation (P < 0.05) and decrease of activation of the ERK1/2 (P < 0.05), respectively. To further investigate the role of glycosphingolipids in neural differentiation, the embryoid bodies formed from Ugcg-shRNA transfected mESCs were differentiated into neural cells by treatment with retinoic acid. We found that inhibition of Ugcg expression did not affect embryoid body (EB) differentiation, as judged by morphological comparison and expression of early neural precursor cell marker, nestin, in differentiated EBs. However, RT-PCR/immunofluorescence analyses showed that expression of microtubule- associated protein 2 (MAP-2) for neurons and glial fibrillary acidic protein (GFAP) for glial cells was decreased in neural cells differentiated from the shRNA-transfected mESCs. These results suggest that glycosphingolipids are involved in the proliferation of mESCs through ERK1/2 activation, and that glycosphingolipids play roles in differentiation of neural precursor cells derived from mESCs.  相似文献   

2.
Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells).  相似文献   

3.
4.
Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca2+. Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs.  相似文献   

5.
从蛋白质组学角度分析大鼠骨髓间充质干细胞(MSCs)体外定向分化为心肌细胞过程中蛋白表达情况, 采用二维电泳分离蛋白, 用PDQuest软件分析蛋白表达差异, 并采用质谱(MALDI-TOF-MS)进行鉴定, 得到了54个蛋白点, 对蛋白的生物功能分析表明, 部分蛋白通过不同的信号途径参与了MSCs的分化过程.  相似文献   

6.
Human embryonic stem (hES) cells are capable of differentiating into pluralistic cell types, however, spontaneous differentiation generally gives rise to a limited number of specific differentiated cell types and a large degree of cell heterogeneity. In an effort to increase the efficiency of specified hES cell differentiation, we performed a series of transient transfection of hES cells with EGFP expression vectors driven by different promoter systems, including human cellular polypeptide chain elongation factor 1 alpha (hEF1alpha), human cytomegalo-virus, and chicken beta-actin. All these promoters were found to lead reporter gene expression in undifferentiated hES cells, but very few drug-selectable transfectants were obtained and failed to maintain stable expression of the transgene with either chemical or electroporation methods. In an attempt to increase transfection efficiency and obtain stable transgene expression, differentiated hES cells expressing both mesodermal and ectodermal markers were derived using a defined medium. Differentiated hES cells were electroporated with a hEF1alpha promoter-driven EGFP or human noggin expression vector. Using RT-PCR, immunocytochemistry and fluorescence microscopy, the differentiated hES cells transfected with foreign genes were confirmed to retain stable gene and protein expression during prolonged culture. These results may provide a new tool for introducing exogenous genes readily into hES cells, thereby facilitating more directed differentiation into specific and homogenous cell populations.  相似文献   

7.
Diabetes mellitus, which is the result of autoimmune destruction of the insulin-producing β cells, occurs by loss of insulin-secreting capacity. The insufficient source of insulin-producing cells (IPCs) is the major obstacle for using transplantation as diabetes treatment method. The present study suggests a method to form islet-like clusters of IPCs derived from mouse embryonic stem cells (mESCs). This protocol consists of several steps. Before starting this protocol, embryoid bodies (EBs) should be cultured in suspension in conditioned medium of isolated mouse pancreatic islet in combination with activing A to be induced. Then differentiated mESCs were replaced with dishes supplemented with basic fibroblast growth factor (bFGF). Next, bFGF was withdrawn, and cyclopamine and noggin were added. Then the cells were treated with B27, nicotinamide, and islet-conditioned medium for maturation. mESCs, as the control group, were cultured without any treatment. An enhanced expression of pancreatic-specific genes was detected by qRT-PCR and immunofluorescence in the differentiated mESCs. The differentiated mESCsco express other markers of pancreatic islet cells as well as insulin. This method exhibited higher insulin generation and further improvement in IPCs protocol that may result in an unlimited source of ES cells suitable for transplantation. The results indicated that conditioned medium, just as critical components of the stem cell niche associated with other factors, had high potential to differentiate mESCs into IPCs.  相似文献   

8.
Human embryonic stem cells (hESCs) are considered to be able to stably maintain their characteristics in vitro for prolonged periods, but we had previously encountered changes in proliferative ability and differentiation potential during extended culture of hESCs. Therefore, we investigated the proliferative ability and differentiation potential of hESCs during long-term culture. The hESCs, SNUhES3, were used to analyze population-doubling time, proliferation rate and differentiation potential. We classified hESCs into three groups according to culture period. Ten colonies of hESCs for each group were daily measured colony area and population-doubling time was assessed by the changes of colony area. Proliferation rate of hESCs was measured by 5-bromo-2'-deoxyuridine (BrdU) assay and telomerase activity. To evaluate differentiation potentials for hESCs, expression levels of undifferentiated and/or differentiated hESCs markers were examined by FACS, RT-PCR and immunostaining. Population-doubling time of early passage hESCs was longer than those of middle or late passage. Proliferative ability of hESCs was accelerated depending on culture periods. Cellular morphologies and the expression level of each three germ layer markers were obviously different from each passage of reattached embryoid bodies (EBs) after spontaneous differentiation. Differentiated cells of late passage expressed higher levels of undifferentiated markers such as Oct4 and SSEA4 than those of early and middle passage. But differentiated cells of early and middle passage expressed higher level of differentiated state markers, Nestin (ectoderm), Brachyury (mesoderm), HNF3beta (endoderm). From these results, it can be inferred that hESCs show higher proliferative abilities and reduced differentiation potentials as the passage number increased. Therefore, we conclude that early passage hESCs could be more suitable than middle and late passage hESCs in differentiation studies.  相似文献   

9.
The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application.  相似文献   

10.
11.
12.
Kim C  Lee KS  Bang JH  Kim YE  Kim MC  Oh KW  Lee SH  Kang JY 《Lab on a chip》2011,11(5):874-882
This paper proposes a microfluidic device for the on-chip differentiation of an embryoid body (EB) formed in a microwell via 3-dimensional cultures of mouse embryonic carcinoma (EC) cells. The device adjusted the size of the EB by fluid volume, differentiated the EB by chemical treatment, and evaluated its effects in EC cells by on-chip immunostaining. A microfluidic resistance network was designed to control the size of the embryoid body. The duration time and flow rate into each microwell regulated the initial number of trapped cells in order to adjust the size of the EB. The docked cells were aggregated and formed a spherical EB on the non-adherent surface of the culture chip for 3 days. The EC cells in the EB were then differentiated into diverse cell lineages without attachment for an additional 4 days; meanwhile, retinoic acid (RA) was applied without serum to direct the cells into early neuronal lineage. On-chip immunostaining of the EB in the microwell with a neuronal marker was conducted to assess the differentiation-inducing ability of RA. The effect of RA on neuronal differentiation was analyzed with confocal microscopic images of the TuJ1 marker. The RA-treated cells expressed more neuronal markers and appeared as mature neuronal cells with long neurites. The fluorescence intensity of the TuJ1 in the RA-treated EB was twice that observed in the non-treated EB on day 5. It was demonstrated that the pre-screening of inducing chemicals on the early neuronal differentiation of EC cells in a single microfluidic chip was indeed feasible. This chip is expected to constitute a useful tool for assessing the early differentiation of ES cells without attachment, and is also expected to prove useful as an anti-cancer drug test platform for the cytotoxicity assay with cellular spheroids.  相似文献   

13.
Using low-pressure carbon dioxide (CO2), we demonstrated a novel and versatile approach to assembling polymeric constructs in the presence of cells and/or biomolecules in an aqueous environment. By regulating the CO2 pressure, the assembly was completed at biologically permissive temperatures with excellent preservation of the original structures. We further demonstrated that mammalian cells can survive the CO2-assisted bioassembly process (37 degrees C, 1.38 MPa, approximately 1 h). Human mesenchymal stem cells from bone marrow (hMSCs) exhibited the same cell morphology and proliferation potential as the untreated control. Mouse embryonic stem cells (mESCs) maintained ES-specific Oct-4 gene expression and differentiation potential after CO2 treatment as well. This method highlights the ability to construct multiple biodegradable polymeric scaffolds with well-defined architecture, on which various types of cells were grown, into a predesigned three-dimensional complex. In addition, protein and DNA bioactivity can be preserved in the context of a CO2-assisted assembly. This CO2-assisted bioassembly method provides for a manufacturing platform that, thus far, has been lacking in the fields of tissue engineering, cell-based biochips, cell therapy, and drug delivery.  相似文献   

14.
Mesenchymal stem cells (MSCs) secrete bioactive factors that exert diverse responses in vivo. In the present study, we explored mechanism how MSCs may lead to higher functional recovery in the animal stroke model. Bone marrow-derived MSCs were transplanted into the brain parenchyma 3 days after induction of stroke by occluding middle cerebral artery for 2 h. Stoke induced proliferation of resident neural stem cells in subventricular zone. However, most of new born cells underwent cell death and had a limited impact on functional recovery after stroke. Transplantation of MSCs enhanced proliferation of endogenous neural stem cells while suppressing the cell death of newly generated cells. Thereby, newborn cells migrated toward ischemic territory and differentiated in ischemic boundaries into doublecortin+ neuroblasts at higher rates in animals with MSCs compared to control group. The present study indicates that therapeutic effects of MSCs are at least partly ascribed to dual functions of MSCs by enhancing endogenous neurogenesis and protecting newborn cells from deleterious environment. The results reinforce the prospects of clinical application using MSCs in the treatment of neurological disorders.  相似文献   

15.
A strategy combining high-performance thin layer chromatography (HPTLC), laser densitometry, and fully automated chip-based nanoelectrospray (nanoESIchip) performed on a NanoMate robot coupled to QTOF-MS was developed, optimized, and for the first time applied for mapping and structural identification of gangliosides (GGs) extracted and purified from a human angioblastic meningioma specimen. While HPTLC pattern indicated only seven fractions migrating as GM3, GM2, GM1, GD3, GD1a (nLD1, LD1), GD1b, GT1b, and possibly GD2, due to the high sensitivity, mass accuracy, and ability to ionize minor species in complex mixtures, nanoESIchip-QTOF MS was able to discover significantly more GG species than ever reported in meningioma. Thirty-four distinct glycosphingolipid components of which five asialo, one GM4, nine GM3, two GM2, two GD3, nine GM1, and six GD1 differing in their ceramide compositions were identified. All structures presented long-chain bases with 18 carbon atoms, while the length of the fatty acid was found to vary from C11 to C25. MS screening results indicated also that the diversity of the expressed GM1 structures is higher than expected in view of the low proportions evidenced by densitometric quantification. Simultaneous fragmentation of meningioma-associated GM1 (d18:1/24:1) and GM1 (d18:1/24:0) by MS/MS using CID confirmed the postulated structures of the ceramide moieties and provided data on the glycan core, which document that for each of the GM1 (d18:1/24:1) and GM1 (d18:1/24:0) forms both GM1a and GM1b isomers are expressed in the investigated meningioma tissue.  相似文献   

16.
Skeletal muscle contains several precursor cells that generate muscle, bone, cartilage and blood cells. Although there are reports that skeletal muscle-derived cells can trans-differentiate into neural-lineage cells, methods for isolating precursor cells, and procedures for successful neural induction have not been fully established. Here, we show that the preplate cell isolation method, which separates cells based on their adhesion characteristics, permits separation of cells possessing neural precursor characteristics from other cells of skeletal muscle tissues. We term these isolated cells skeletal muscle-derived neural precursor cells (SMNPs). The isolated SMNPs constitutively expressed neural stem cell markers. In addition, we describe effective neural induction materials permitting the neuron-like cell differentiation of SMNPs. Treatment with retinoic acid or forskolin facilitated morphological changes in SMNPs; they differentiated into neuron-like cells that possessed specific neuronal markers. These results suggest that the preplate isolation method, and treatment with retinoic acid or forskolin, may provide vital assistance in the use of SMNPs in cell-based therapy of neuronal disease.  相似文献   

17.
18.
With the increasing use of culture-expanded mesenchymal stromal cells (MSCs) for cell therapies, factors that regulate the cellular characteristics of MSCs have been of major interest. Oxygen concentration has been shown to influence the functions of MSCs, as well as other normal and malignant stem cells. However, the underlying mechanisms of hypoxic responses and the precise role of hypoxia-inducible factor-1α (Hif-1α), the master regulatory protein of hypoxia, in MSCs remain unclear, due to the limited span of Hif-1α stabilization and the complex network of hypoxic responses. In this study, to further define the significance of Hif-1α in MSC function during their self-renewal and terminal differentiation, we established adult bone marrow (BM)-derived MSCs that are able to sustain high level expression of ubiquitin-resistant Hif-1α during such long-term biological processes. Using this model, we show that the stabilization of Hif-1α proteins exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal and proliferation, without affecting the proliferation of the MSC mass population. Moreover, Hif-1α stabilization in MSCs led to the induction of pluripotent genes (oct-4 and klf-4) and the inhibition of their terminal differentiation into osteogenic and adipogenic lineages. These results provide insights into the previously unrecognized roles of Hif-1α proteins in maintaining the primitive state of primary MSCs and on the cellular heterogeneities in hypoxic responses among MSC populations.  相似文献   

19.
Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.  相似文献   

20.
Prostanoid metabolites are key mediators in inflammatory responses, and accumulating evidence suggests that mesenchymal stem cells (MSCs) can be recruited to injured or inflamed tissues. In the present study, we investigated whether prostanoid metabolites can regulate migration, proliferation, and differentiation potentials of MSCs. We demonstrated herein that the stable thromboxane A2 (TxA2) mimetic U46619 strongly stimulated migration and proliferation of human adipose tissue-derived MSCs (hADSCs). Furthermore, U46619 treatment increased expression of α-smooth muscle actin (α-SMA), a smooth muscle marker, in hADSCs, suggesting differentiation of hADSCs into smooth muscle-like cells. U46619 activated ERK and p38 MAPK, and pretreatment of the cells with the MEK inhibitor U0126 or the p38 MAPK inhibitor SB202190 abrogated the U46619-induced migration, proliferation, and α-SMA expression. These results suggest that TxA2 plays a key role in the migration, proliferation, and differentiation of hADSCs into smooth muscle-like cells through signaling mechanisms involving ERK and p38 MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号