首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Purpose

To verify whether in patients with partial epilepsy and routine electroenecephalogram (EEG) showing focal interictal slow-wave discharges without spikes combined EEG–functional magnetic resonance imaging (fMRI) would localize the corresponding epileptogenic focus, thus providing reliable information on the epileptic source.

Methods

Eight patients with partial epileptic seizures whose routine scalp EEG recordings on presentation showed focal interictal slow-wave activity underwent EEG–fMRI. EEG data were continuously recorded for 24 min (four concatenated sessions) from 18 scalp electrodes, while fMRI scans were simultaneously acquired with a 1.5-Tesla magnetic resonance imaging (MRI) scanner. After recording sessions and MRI artefact removal, EEG data were analyzed offline. We compared blood oxygen level-dependent (BOLD) signal changes on fMRI with EEG recordings obtained at rest and during activation (with and without focal interictal slow-wave discharges).

Results

In all patients, when the EEG tracing showed the onset of focal slow-wave discharges on a few lateralized electrodes, BOLD-fMRI activation in the corresponding brain area significantly increased. We detected significant concordance between focal EEG interictal slow-wave discharges and focal BOLD activation on fMRI. In patients with lesional epilepsy, the epileptogenic area corresponded to the sites of increased focal BOLD signal.

Conclusions

Even in patients with partial epilepsy whose standard EEGs show focal interictal slow-wave discharges without spikes, EEG–fMRI can visualize related focal BOLD activation thus providing useful information for pre-surgical planning.  相似文献   

2.
We studied a patient with refractory focal epilepsy using continuous EEG-correlated fMRI. Seizures were characterized by head turning to the left and clonic jerking of the left arm, suggesting a right frontal epileptogenic region. Interictal EEG showed occasional runs of independent nonlateralized slow activity in the delta band with right frontocentral dominance and had no lateralizing value. Ictal scalp EEG had no lateralizing value. Ictal scalp EEG suggested right-sided central slow activity preceding some seizures. Structural 3-T MRI showed no abnormality. There was no clear epileptiform abnormality during simultaneous EEG-fMRI. We therefore modeled asymmetrical EEG delta activity at 1-3 Hz near frontocentral electrode positions. Significant blood oxygen level-dependent (BOLD) signal changes in the right superior frontal gyrus correlated with right frontal oscillations at 1-3 Hz but not at 4-7 Hz and with neither of the two frequency bands when derived from contralateral or posterior electrode positions, which served as controls. Motor fMRI activations with a finger-tapping paradigm were asymmetrical: they were more anterior for the left hand compared with the right and were near the aforementioned EEG-correlated signal changes. A right frontocentral perirolandic seizure onset was identified with a subdural grid recording, and electric stimulation of the adjacent contact produced motor responses in the left arm and after discharges. The fMRI localization of the left hand motor and the detected BOLD activation associated with modeled slow activity suggest a role for localization of the epileptogenic region with EEG-fMRI even in the absence of clear interictal discharges.  相似文献   

3.
Elimination of k-space spikes in fMRI data   总被引:1,自引:0,他引:1  
The subtle signal changes in functional magnetic resonance imaging (fMRI) can be easily overwhelmed by noise of various origins. Spikes in the collected fMRI raw data often arise from high-duty usage of the scanner hardware and can introduce significant noise in the image and thereby in the image time series. Consequently, the spikes will corrupt the functional data and degrade the result of functional mapping. In this work, a simple method based on processing the time course of the k-space data are introduced and implemented to remove the spikes in the acquired data. Application of the method to experimental data shows that the methods are robust and effective for eliminating of spike-related noise in fMRI time series.  相似文献   

4.
The authors report the technical feasibility of measuring event-related changes in blood oxygenation for studying brain function in humans at high temporal resolution. Measurements were performed on a conventional wholebody 1.5 T clinical scanner with a nonactive-shielded standard gradient system of 1 ms rise time for a maximum gradient strength of 10 mT/m. The radiofrequency (RF) transmitting and receiving MR unit consists of a commercially available circular polarized head coil. Magnet shimming with all first-order coils was performed to the volunteer's head resulting in a magnetic field homogeneity of about 0.1–0.2 ppm. The measuring sequence used was a modified 3D, first-order flow rephased, FLASH sequence with reduced bandwidth = 40 Hz/pixel, TR = 80 ms, TE = 56 ms, flip angle = 40–50°, matrix = 64 × 128, field-of-view = 200–250 mm2, slice thickness = 4 mm, NEX = 1, 128 partitions, and a total single scan time of about 10 min. In this sequence the 3D gradient table was removed and the 3D partition-loop acts as a time-loop for sequential measurement of 128 or 32 consecutive images at the same slice position. This means that event-related functional MRI could be performed with an interscan delay of 80 ms for a series of 128 sequential images or with an interscan delay of 320 ms for a simultaneous measurement of four slices with a series of 32 sequential images for each slice. We used a TTL signal given by the gradient board at the beginning of every line-loop in the measuring sequence and a self-made “TTL-Divider-Box” for the event triggering. This box was used to count and scale down the TTL signals by a factor of 128 and to trigger after every 128th TTL signal a single white flash-light, which was seen by the volunteer in the dark room of the scanner with a period of 10.24 s. As a consequence, the resulting event-related scan data coincide at each line of the series of 128 sequential images, which were repeated in 128 × 80 ms or 32 × 320 ms for the single- or four-slice experiment, respectively. Visual cortex response magnitude measured was about 5–7% with an approximate Gaussian shape and a rise time from stimulus onset to maximum of about 3–4 s, and a fall time to the baseline of about 5–6 s after end of stimulus. The reported data demonstrate the feasibility of functional MRI studies at high temporal resolution (up to 80 ms) using conventional MR equipment and measuring sequence.  相似文献   

5.
Main structural correlates of epileptogenesis include hippocampal sclerosis, cortical dysgenesis, foreign tissue lesions, gliosis, and dual pathology (a combination of any two). These structural abnormalities are now increasingly defined with MRI, enabling systematic EEG correlative analyses. Hippocampal atrophy (HA) and increased T2 signal in medial temporal structures predict the presence of mesial temporal sclerosis with a high degree of sensitivity and specificity. In 50 patients with clinical evidence of temporal lobe epilepsy and isolated HA, ictal scalp EEG was concordant to the atrophic temporal lobe in 33, nonlateralizing in 12, obscured in 3, and bilateral in 2, but it was discordant in none. Earlier reports of higher levels of discordance may be ascribed to the presence of dual pathology or to differing MRI and EEG criteria for localization. In a more inclusive group of 101 patients with unilateral HA, ictal scalp EEG was obtained in 99. It was unlocalized in 53, localized elsewhere in 9, and localized to the atrophic temporal lobe in 38. Of those, 51 patients had intracranial EEG: 12 were unlocalized, 29 were localized to the atrophic hippocampus, and 9 were localized elsewhere. There is thus a rare but definite subgroup of patients with unilateral HA who have EEG localization elsewhere than the atrophy. The successful cure of seizures in half these patients after removal of the EEG focus confirms the importance of this observation and emphasizes the search for more dual pathology that has remained undetected on MRI. About 10% of the patients with HA have significant atrophy bilaterally, and several series have confirmed that surgical success is predicted by removal of the EEG identified seizure onset area, not the more or less atrophic hippocampus. In patients with other kinds of dual pathology, including HA and foreign tissue lesions or cortical dysgenesis, EEG is also paramount in predicting the site of epileptogenesis for surgical intervention. EEG correlates of cortical dysgenesis are heterogeneous, but EEG has potential to provide accurate localization of the site of epileptogenesis in foreign tissue lesions also. In a study of 59 lesional patients, a small number of patients with low grade astrocytomas and oligodendrogliomas consistently localized by EEG to an area elsewhere than the lesion, and failed seizure control when the lesion was removed. Although MRI can demonstrate the structural correlate of the epilepsy in many situations, rare patients, particularly with certain tumors, cortical dysgenesis, and dual pathology, require EEG for accurate localization.  相似文献   

6.
IntroductionIn-scanner head motion is a common cause of reduced image quality in neuroimaging, and causes systematic brain-wide changes in cortical thickness and volumetric estimates derived from structural MRI scans. There are few widely available methods for measuring head motion during structural MRI. Here, we train a deep learning predictive model to estimate changes in head pose using video obtained from an in-scanner eye tracker during an EPI-BOLD acquisition with participants undertaking deliberate in-scanner head movements. The predictive model was used to estimate head pose changes during structural MRI scans, and correlated with cortical thickness and subcortical volume estimates.Methods21 healthy controls (age 32 ± 13 years, 11 female) were studied. Participants carried out a series of stereotyped prompted in-scanner head motions during acquisition of an EPI-BOLD sequence with simultaneous recording of eye tracker video. Motion-affected and motion-free whole brain T1-weighted MRI were also obtained. Image coregistration was used to estimate changes in head pose over the duration of the EPI-BOLD scan, and used to train a predictive model to estimate head pose changes from the video data. Model performance was quantified by assessing the coefficient of determination (R2). We evaluated the utility of our technique by assessing the relationship between video-based head pose changes during structural MRI and (i) vertex-wise cortical thickness and (ii) subcortical volume estimates.ResultsVideo-based head pose estimates were significantly correlated with ground truth head pose changes estimated from EPI-BOLD imaging in a hold-out dataset. We observed a general brain-wide overall reduction in cortical thickness with increased head motion, with some isolated regions showing increased cortical thickness estimates with increased motion. Subcortical volumes were generally reduced in motion affected scans.ConclusionsWe trained a predictive model to estimate changes in head pose during structural MRI scans using in-scanner eye tracker video. The method is independent of individual image acquisition parameters and does not require markers to be to be fixed to the patient, suggesting it may be well suited to clinical imaging and research environments. Head pose changes estimated using our approach can be used as covariates for morphometric image analyses to improve the neurobiological validity of structural imaging studies of brain development and disease.  相似文献   

7.
Tissue water molecules reside in different biophysical compartments. For example, water molecules in the vasculature reside for variable periods of time within arteries, arterioles, capillaries, venuoles and veins, and may be within blood cells or blood plasma. Water molecules outside of the vasculature, in the extravascular space, reside, for a time, either within cells or within the interstitial space between cells. Within these different compartments, different types of microscopic motion that water molecules may experience have been identified and discussed. These range from Brownian diffusion to more coherent flow over the time scales relevant to functional magnetic resonance imaging (fMRI) experiments, on the order of several 10s of milliseconds. How these different types of motion are reflected in magnetic resonance imaging (MRI) methods developed for "diffusion" imaging studies has been an ongoing and active area of research. Here we briefly review the ideas that have developed regarding these motions within the context of modern "diffusion" imaging techniques and, in particular, how they have been accessed in attempts to further our understanding of the various contributions to the fMRI signal changes sought in studies of human brain activation.  相似文献   

8.
Gradient eddy currents, induced in the surrounding conductive structures in a magnetic resonance (MR) magnet, are a major problem in MR imaging, in localized MR spectroscopy and in many other MR experiments. We present a comparison of three methods of measuring the gradient time characteristics and the time changes of basic magnetic fieldB 0 after the gradient is switched off. The methods are based on the selective excitation of a thin layer of the sample and on acquiring the MR signal obtained after the end of the gradient pulse and on the computation of the instantaneous frequency of the signal. At this point, the time gradient characteristic is proportional to the instantaneous frequency of the MR signal, which has a small signal-to-noise ratio. We use the characteristics measured to set the pre-emphasis parameters in a 200 MHz/200 mm MR scanner. From the results obtained by measurement it follows that all methods are convenient for simple and quick characterization of magnetic field gradient in MR tomographic magnets.  相似文献   

9.
Simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) acquisition can identify the brain networks involved in generating specific EEG patterns. Yet, the combination of these methodologies is hampered by strong artifacts that arise due to electromagnetic interference during magnetic resonance (MR) image acquisition. Here, we report corrections of the gradient-induced artifact in phantom measurements and in experiments with an awake behaving macaque monkey during fMRI acquisition at a magnetic field strength of 4.7 T. Ninety-one percent of the amplitude of a 10 microV, 10 Hz phantom signal could successfully be recovered without phase distortions. Using this method, we were able to extract the monkey EEG from scalp recordings obtained during MR image acquisition. Visual evoked potentials could also be reliably identified. In conclusion, simultaneous EEG/fMRI acquisition is feasible in the macaque monkey preparation at 4.7 T and holds promise for investigating the neural processes that give rise to particular EEG patterns.  相似文献   

10.
《Magnetic resonance imaging》1996,14(9):1007-1012
The localization of critical structures within the brain is important for the planning of therapeutic strategies. Functional MRI is capable to assess functional response of cortical structures to certain stimuli. The authors present two techniques for functional MRI (fMRI) in a stereotactic set-up. The skull of the patients has been immobilized for stereotactic treatment planning either with a self developed stereotactic ceramic frame and bony fixation or with an individual precision mask system made of light cast. It has been shown that this frame does not produce any image distortion. fMRI was performed using a modified FLASH sequence on a conventional 1.5 T MRI scanner with a specially developed linear polarized head coil. The imaging technique used was an optimized conventional 2D and 3D, first order flow rephased, gradient echo sequence (FLASH) with fat-suppression and reduce bandwidth (16–28 Hz/pixel) and TR = 80–120 ms, TE = 60 ms, flip angle = 40°, matrix = 128 × 128, FOV = 150–250 mm, slice-thickness = 2–5 mm, NEX = 1, and a total single scan time for one image of about 7 sec. The motor cortex stimulation was achieved by touching each finger to thumb in a sequential, self-paced, and repetitive manner. Statistical parametric maps based on student's test were calculated. Pixels with a highly significant signal increase (p < 0.001) are overlaid on T1w SE images. The primary motor and sensory cortex could be visualized with this method in all 10 patients that were imaged in this study. Due to tight fixation of the patient's skull there have been no motion artifacts. These results show that functional MRI is feasible in an stereotactic set-up with an standard 1.5 T scanner. This is a prerequisite for the exact pre therapeutic assessment of the function of cortical centers.  相似文献   

11.
Magnetic field gradients play a fundamental role in MR imaging and localized spectroscopy. The MRI experiment, in particular fast MRI, relies on precise gradient switching, which has become more demanding with the constantly growing number of fast imaging techniques. Here we present a simple MR method to measure the behavior of a magnetic field gradient waveform in an MR scanner. The method employs excitation of a thin slice, followed by application of the studied gradient and simultaneous FID acquisition. Measurements of different gradient waveforms were performed with a spherical phantom filled with doped water and positioned at the isocenter of the gradient set. The presented experiments demonstrate the capability of the technique to measure different gradient waveforms with an estimated error of less than 200 microT/m.  相似文献   

12.
Functional magnetic resonance imaging (fMRI) was performed on a conventional 1.5 T scanner by means of a modified FLASH-technique at temporal resolutions of 80 and 320 ms. The method's stability was assessed by phantom measurements and by investigation of three volunteers resulting in a low amplitude (3%) periodic (4 s) signal modulation for the in vivo measurements, which was not observable in the phantom experiments. fMRI activation studies of motor and visual cortices of four adjacent slices were carried out on 12 healthy right-handed volunteers. Stimulation was performed by a triggered single white light flash or single finger-to-thumb opposition movement, respectively. Event-related response of visual and motor activation was traced over 10.24 s with a temporal resolution of 320 ms for the four slice measurements. Brain activation maps were calculated by correlation of measured signal time courses with a time-shifted boxcar function. Activation was quantified by calculation of percentual signal change in relation to the baseline. Observed signal magnitudes were about 5–7% in visual and about 8–12% in primary motor cortex. While photic response was delayed by about 2 s, motor stimulation showed an instantaneous increase of the MR signal. MR signal responses for both stimuli had decayed completely after about 5 s. Our results show that event-related fMRI enables mapping of brain function at sufficient spatial resolution with a temporal resolution of up to 80 ms on a conventional scanner.  相似文献   

13.
In pharmacological magnetic resonance imaging (phMRI) with anesthetized animals, there is usually only a single time window to observe the dynamic signal change to an acute drug administration since subsequent drug injections are likely to result in altered response properties (e.g., tolerance). Unlike the block-design experiments in which fMRI signal can be elicited with multiple repetitions of a task, these single-event experiments require stable baseline in order to reliably identify drug-induced signal changes. Such factors as subject motion, scanner instability and/or alterations in physiological conditions of the anesthetized animal could confound the baseline signal. The unique feature of such functional MRI (fMRI) studies necessitates a technique that is able to monitor MRI signal in a real-time fashion and to interactively control certain experimental procedures. In the present study, an approach for real-time MRI on a Bruker scanner is presented. The custom software runs on the console computer in parallel with the scanner imaging software, and no additional hardware is required. The utility of this technique is demonstrated in manganese-enhanced MRI (MEMRI) with acute cocaine challenge, in which temporary disruption of the blood-brain barrier (BBB) is a critical step for MEMRI experiments. With the aid of real-time MRI, we were able to assess the outcome of BBB disruption following bolus injection of hyperosmolar mannitol in a near real-time fashion prior to drug administration, improving experimental success rate. It is also shown that this technique can be applied to monitor baseline physiological conditions in conventional fMRI experiments using blood oxygenation level-dependent (BOLD) contrast, further demonstrating the versatility of this technique.  相似文献   

14.
The objectives of this study were to assess the relationship between right and left hemidiaphragmatic motions during breathing in normal subjects and to investigate alterations in lung motion with changes in posture, using dynamic magnetic resonance (MR) imaging. Imaging was conducted with a 1.5-T MR scanner using fast imaging employing steady-state acquisition with a torso coil. Eight healthy subjects were instructed to breathe from end-inspiration to end-expiration as slowly and as deeply as possible. Imaging and breathing were started together to afford sequential images on the coronal plane. Imaging sequences were performed in supine, prone, left lateral decubitus and right lateral decubitus postures. The component of movement of the most cephalic point in the cephalocaudal axis was measured, and the diaphragmatic excursion (maximum hemidiaphragmatic displacement), synchrony and velocity of the right and left hemidiaphragmatic motions were calculated during the expiratory phase and the inspiratory phase, respectively. Excursion was greater in the right hemidiaphragm in most postures, except the left lateral decubitus. In supine and prone postures, both hemidiaphragms moved synchronously in both inspiratory and expiratory phases. In both lateral decubitus postures, the hemidiaphragms moved asynchronously with different velocities in the expiratory phase but with the same velocities in the inspiratory phase. The method described here allowed the assessment of diaphragmatic motions. Motions in the right and left hemidiaphragms changed with posture. In addition, diaphragmatic motion differed between expiratory and inspiratory phases. This study suggests the further potential of dynamic MR imaging for the evaluation of pulmonary functions or deficiencies.  相似文献   

15.
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has become a widely used application in spite of EEG perturbations due to electromagnetic interference in the MR environment. The most prominent and disturbing artifacts in the EEG are caused by the alternating magnetic fields (gradients) of the MR scanner. Different methods for gradient artifact correction have been developed. Here we propose an approach for the systematic evaluation and comparison of these gradient artifact correction methods. Exemplarily, we evaluate different algorithms all based on artifact template subtraction--the currently most established means of gradient artifact removal. We introduce indices for the degree of gradient artifact reduction and physiological signal preservation. The combination of both indices was used as a measure for the overall performance of gradient artifact removal and was shown to be useful in identifying problems during artifact removal. We demonstrate that the evaluation as proposed here allows to reveal frequency-band specific performance differences among the algorithms. This emphasizes the importance of carefully selecting the artifact correction method appropriate for the respective case.  相似文献   

16.
The 1H double-quantum filtered (DQF) NMR and DQF MRI is applied to the joint tissues of rabbits for selective visualization of tendons, menisci and articular cartilage. The 1H DQF NMR selectively filters double-quantum coherence arising from the 1H dipolar interaction of the “bound” water in these tissues. The double-quantum creation time dependency of the DQF signal intensity is determined by the molecular environment of the “bound” water. Therefore, each tissue has a unique creation time at which the DQF signal reaches its maximum intensity, τmax (Achilles tendon: 0.46 ± 0.02 ms, patella: 0.55 ± 0.8 ms, anterior cruciate ligament: 0.60 ± 0.05 ms, meniscus: 0.78 ± 0.02 ms, skin: 0.81 ± 0.07 ms). We have presented the creation-time-contrasted DQF images of the meniscus, patella, foot, and knee joint. Compared with conventional T2*-weighted gradient-echo (GRE) MR images, tendons, ligaments, menisci, and articular cartilage were more clearly seen in the DQF MR images. All these tissues were distinctly discriminated from each other by their creation times. DQF MR images of foot and knee joints can selectively demonstrated tendons, ligaments, and cartilage, which make it easier to understand the complicated anatomic structure of joints. Because the DQF NMR signal intensity and τmax are sensitive to the order structure of the “bound” water, it might be possible to introduce the creation-time dependent-contrast of 1H DQF MR images as a new tool for analyzing the changes in the ordered structure of the tissue.  相似文献   

17.
Cortical activation in visual association areas known to be responsible for the perception of motion was investigated in two volunteers who viewed a projected animated cartoon periodically “run” and “frozen” during collection of echoplanar MR images. Ten axial, contiguous, 5 mm thick, T2-weighted, gradient-echo images (TE 40 ms, TR 3000 ms) depicting BOLD contrast were acquired through the occipital lobe using a GE Signa 1.5 T system with an advanced NMR operating console. Images were analysed by time series regression modelling estimating power in the MR signal at the ON-OFF frequency of motion. Highly significant activation in response to motion perception was identified in both subjects bilaterally in area V5.  相似文献   

18.
Magnetic resonance imaging (MRI) is a useful tool for non-invasive identification and characterization of atherosclerotic plaques in both basic science and clinical practice. To date, the reported studies on in vivo vascular MRI of small animals, such as mice and rats, are mainly performed on high-field micro-MR scanners, which are not always available in many academic institutions and basic research units. This study aimed to explore the possibility of generating high-resolution MR images of the atherosclerotic aortic walls/plaques of mice using a clinical 3.0 T MR scanner with a dedicated solenoid mouse coil. An atherosclerotic mouse model was first generated by feeding 8 ApoE/ mice an atherogenic diet. MR images of the ascending aortas of these mice were then achieved using a three-dimensional black-blood turbo spin-echo sequence (repetition time TR = 4 heart echo time TE = 10 ms). The MRI displayed a clear view of the aortic lumens and the atherosclerotic lesions, which correlated significantly well with subsequent histological confirmations (linear regression analysis, r = 0.73, P = 0.04). This study demonstrated that a clinical 3.0 T MR scanner can be used for high-resolution imaging of mouse atherosclerotic lesions to some extent.  相似文献   

19.
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705–717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner.  相似文献   

20.
The construction of a high quality MR RF-antenna with incorporated EEG electrodes for simultaneous MRI and EEG acquisition is presented. The antenna comprises an active decoupled surface coil for receiving the MR signal and a whole body coil for transmitting the excitation RF pulses. The surface coil offers a high signal-to-noise ratio required for fMRI application and the whole body coil has a good B(1) excitation profile, which enables the application of homogeneous RF pulses. Non-invasive carbon electrodes are used in order to minimise the magnetic susceptibility artefacts that occur upon application of conductive materials. This dedicated set-up is compared to a standard set-up being a linear birdcage coil and commercially available Ag/AgCl electrodes. As the acquired EEG signals are heavily disturbed by the gradient switching, intelligent filtering is applied to obtain a clean EEG signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号