首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
内混合强吸收气溶胶粒子光散射的等效性   总被引:7,自引:2,他引:7       下载免费PDF全文
 以黑碳和水两种成分组成的内混合单分散气溶胶粒子为例,根据其各消光效率因子、吸收效率因子和散射相函数,分析了用等效折射率来描述含有不同成分的内混合气溶胶系统的适用性。结果表明:在瑞利散射区和几何光学区内,内核(碳粒)体积比为0.01,0.1,0.5,0.9时,消光效率在大多数尺度参数下等效性都很好,但在米散射区内相对较差;当体积比大于0.3时,其吸收效率、消光效率等效性较好;除瑞利散射区外,散射相函数在各体积比下的等效性都很差。当考虑内混合气溶胶粒子系统的散射和吸收特性时,一般不难找到等效折射率,但在光散射技术中,应用相函数反演等效折射率的可靠性还有待商榷。  相似文献   

2.
Wang L  Li ZQ  Li DH  Li KT  Tian QJ  Li L  Zhang Y  Lü Y  Gu XF 《光谱学与光谱分析》2012,32(6):1644-1649
矿物沙尘是气溶胶的重要化学组分,对气候和环境都有重要影响。本文基于2010年的北京AERONET站点的气溶胶产品资料,分析了复折射指数在440~1 020nm范围内的变化特性,发现实部(n)在各个波段的取值差异不大;而虚部(k)由于受到矿物沙尘吸收的影响从440到670nm呈现出明显下降的趋势。据此,将k(440nm)与其他波段的值分开考虑,增加了一维信息量,从而能将目前基于复折射指数反演气溶胶化学组成的三组分模型(水、黑碳、硫酸铵)扩展为包含矿物沙尘的四组分模型,解决了以往在粗粒子较多时无法进行化学成分反演的难题。针对北京沙尘、灰霾、晴朗三种典型天气进行了气溶胶中沙尘组分的反演试验,获得的体积比例分别为88%,37%和48%,与基于气溶胶粒子体积谱分布计算的粗粒子比例的相对大小具有很好的一致性。  相似文献   

3.
The performance of a narrow-angle and a wide-angle, forward scattering laser aerosol spectrometer has been studied as a function of particle size and refractive index. The results have been compared with theoretical calculations based on light scattering theory. The results indicate that for the narrow-angle instrument, the scattered-light intensity is not a monotonic function of particle size for transparent particles (a monotonic relationship is required for unambiguous particle size measurement) above 0.7 μm. The instrument is therefore limited in its useful range to size distribution measurement between 0.2 μm – its lower particle size limit – and 0.7 μm for transparent particles. In the case of the wide-angle instrument, the instrument output is a monotonic function of particle size for transparent particles, but the output is severely attenuated for light absorbing particles above 0.3 μm. The instrument, therefore, cannot be used for accurate size measurements above 0.3 μm for light absorbing particles.  相似文献   

4.
The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.  相似文献   

5.
在已知大气气溶胶折射率和气溶胶谱分布的基础上, 对近红外波段的气溶胶衰减特性进行了研究。利用Mie散射理论计算并讨论了气溶胶的消光、散射、吸收效率因子随尺度参数的变化和消光系数随半径和波长的变化, 并且在MATLAB中对各种变化情况进行了仿真。结果表明, 三种气溶胶粒子的消光和散射能力依次为沙尘性粒子, 水溶性粒子, 烟煤。消光系数在粒子半径和入射波长相近时达到最大, 并且粒子半径对消光、散射、吸收系数的影响比入射波长更明显。这些结论可以为红外辐射在大气中的衰减计算和分析提供依据。  相似文献   

6.
The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The goal of this study is to introduce a formal approach to assessing the sensitivity of both intensity and polarization signals to absorbing aerosol layering, explicitly accounting for instrument measurement uncertainties. If ignored, sensitivity to aerosol height can introduce biases in aerosol property retrievals at short (ultraviolet or blue) wavelengths; if properly exploited, it may enable the extraction of some basic information on aerosol profiles. Employing a vector successive-orders-of-scattering (SOS) radiative transfer code, we conducted modeling experiments to determine how the measured Stokes vector elements are affected at 446 nm (blue band) by the vertical distribution, mixing and layering of smoke and dust aerosols under the assumption of a simple Lambertian surface and predefined aerosol microphysical properties. We find that smoke and dust vertical layering, if ignored, can introduce biases in radiometric and polarimetric aerosol property retrievals for aerosol optical depth (AOD) above 0.3 (polarimetric) and AOD above 0.5 (radiometric), and should, therefore, be accounted for in retrievals at high aerosol loadings.  相似文献   

7.
The properties of radiation through an aerosol medium have been achieved. This has been done by employing Mie scattering theory to calculate the radiation transfer scattering parameters in the form of extinction, absorption and scattering efficiencies. The equation of radiative transfer for the heat flux through a plane parallel atmosphere of aerosol has been solved. The aerosol size distributions are found in practical systems. Average efficiencies over size distribution for spherical particles of complex refractive index are calculated. Therefore, the radiative properties of stratospheric aerosols have been done. The obtained results found to be in a good agreement with the previous work.  相似文献   

8.
The optical absorption spectra of atmospheric dust as determined by transmission and diffuse reflectance spectroscopic methods is discussed in the 0.4 to 40 um wavelength range. Quantitative measurements are presented which show the imaginary refractive index to be about 0.007i, with little wavelength dependence, in the 0.4 to 1.3 μm spectral interval. The absorption coefficients of individual materials found in atmospheric dust are also given. This work suggests that atmospheric dust may be composed mainly of weakly absorbing particles contaminated with small amounts of very strongly absorbing materials such as free carbon. The implications of this are discussed from the point of view of laser beam attenuation and lidar return signals. Mie theory computations for ruby lidar wavelengths are shown which suggest that for some models of atmospheric dust, the concept of an average imaginary refractive index may be misleading. Thus, it may be necessary to consider the individual complex refractive indices and size distributions of more than one constituent material present in the dust. This implies that anthropogenic contributions to the atmospheric aerosol, such as free carbon and other strong absorbers, may be of greater optical significance than their relative concentrations might indicate.  相似文献   

9.
用T矩阵方法计算了折射率虚部的范围在0.001至0.1的几种椭球粒子随机取向时在几种等效尺度参数下的光散射与吸收特性,并与等效的球形粒子的光散射结果进行了比较。分析结果表明:椭球粒子的吸收特性与等效的球形粒子的吸收特性存在着差别,这种差别随粒子的形状、尺度和折射率而改变,考虑到目前气溶胶粒子复折射率虚部的测量精度,以等效的球体粒子处理非球形粒子的吸收不会带来显著的误差。  相似文献   

10.
The vertical profile of Saharan dust in the atmosphere is generally characterized by a large aerosol concentration in the mid troposphere, differently from the climatological distribution of other types of particles, that show a peak at the surface and a rapid decrease with height. Saharan dust is also characterized by particles of relatively large size of irregular shape, and variable values of the single scattering albedo (the ratio between radiation scattering and extinction). The dust's peculiar vertical distribution is expected to produce an effect on the calculation of the direct aerosol radiative forcing at the surface and at the top of the atmosphere. This effect is investigated by comparing estimates of aerosol direct visible radiative forcing at the surface and at the top of the atmosphere for dust vertical profiles measured in the Mediterranean, and for the climatological profile. The radiative forcing is estimated by means of an accurate radiative transfer model, and for the ocean surface. The sensitivity of the results on the solar zenith angle, aerosol optical depth, and aerosol absorption is also investigated. The aerosol radiative forcing at the surface shows a very small dependency on the aerosol vertical profile. At the top of the atmosphere, the radiative forcing is weakly dependent on the vertical profile (up to 10% variation on the daily average forcing) for low absorbing particles; conversely, it shows a strong dependency (the daily radiative forcing may vary up to 100%) for absorbing particles. The top of the atmosphere visible radiative forcing efficiency produced by dust having single scattering albedo <0.7 is higher by 4 W m−2 when the observed vertical profile instead of the standard profile is used in the calculations (i.e. it produces a lower cooling). For values of the single scattering albedo around 0.67, the sign of the forcing depends on the vertical profile. The influence of the vertical distribution on the radiative forcing is largest at small values of the solar zenith angle, and at short wavelengths.  相似文献   

11.
We developed backward and forward types of algorithms for estimating the vertical profiles of extinction coefficients at 532 nm for three component aerosols (water-soluble, dust, and sea salt) using three-channel Mie-scattering lidar data of the backscatter (β) at 532 and 1064 nm and the depolarization ratio (δ) at 532 nm. While the water-soluble and sea-salt particles were reasonably assumed to be spherical, the dust particles were treated as randomly oriented spheroids to account for their nonsphericity. The introduction of spheroid models enabled us to more effectively use the three-channel data (i.e., 2β+1δ data) and to reduce the uncertainties caused by the assumption of spherical dust particles in our previously developed algorithms. We also performed an extensive sensitivity study to estimate retrieval errors, which showed that the errors in the extinction coefficient for each aerosol component were smaller than 30% (60%) for the backward (forward) algorithm when the measurement errors were ±5%. We demonstrated the ability of the algorithms to partition aerosol layers consisting of three aerosol components by applying them to shipborne lidar data. Comparisons with sky radiometer measurements revealed that the retrieved optical thickness and angstrom exponent of aerosols using the algorithms developed in this paper agreed well with the sky radiometer measurements (within 6%).  相似文献   

12.
张小林  毛毛  银燕 《光散射学报》2017,29(2):102-106
利用米散射理论数值计算分析了尺度参数为0.1~100时球形典型气溶胶粒子的散射和吸收特性对复折射率的依赖性关系。气溶胶粒子复折射率的实部和虚部是一个有机的整体,粒子复折射率的实部和虚部可以分别影响其散射和吸收特性。若实际大气气溶胶粒子大多是成核模态和积聚模态的小粒子,基于气溶胶的散射和吸收特性可以获得其复折射率的唯一解。但是,如果大气中存在大量的粗模态粒子时,气溶胶散射和吸收特性对其复折射率的依赖性较为复杂,只有选择有限的合适复折射率库区间,才有可能获得更合适的有效复折射率。  相似文献   

13.
基于回转椭球模型和有限长圆柱模型,采用T矩阵方法研究了非球形生物气溶胶的单次散射特性,计算了鼠疫耶尔森氏杆菌、土拉热杆菌二种生物气溶胶对氦氖激光的单次相矩阵、单次散射反照率以及不对称因子。根据矢量辐射传输理论,研究了激光在生物气溶胶中传输的偏振散射特性,基于累加-倍加法(adding-doubling method)求解矢量辐射传输方程,并计算了非球形生物气溶胶对激光多次散射的斯托克斯参量。计算结果表明,生物气溶胶的尺寸和形状对光的极化更为敏感,因此在利用激光进行生物气溶胶微观特性探测和反演时,利用激光的偏振散射特性为非常有效的方法。  相似文献   

14.
On the base of a lookup table approach we performed sensitivity tests of dual-polarization polar nephelometer (D2PN) data to optical and microphysical parameters of ensembles of spherical particles. Measurement errors were modeled as Gaussian random variables. It is shown that D2PN data enable to retrieve some microphysical parameters (depending on the case) along with the assessment of the complex refractive index. In the case of the low absorbing particles, measurement errors substantially reduce the sensitivity to the imaginary part of the refractive index and only the range of the imaginary part can be estimated, whereas the real part of the refractive index and the microphysical parameters can be retrieved. When the absorption of spherical particles is moderate, i.e., 10−4?χ?0.5, the real n and imaginary χ parts of the refractive index can be deduced along with the microphysical parameters. In the case when the absorption of spherical particles is high, only the microphysical characteristics and the imaginary part can be retrieved. These limitations on retrieval should be valid for data of other instruments measuring the same magnitudes as D2PN with the same errors, at least for aerosols made of spherical particles.  相似文献   

15.
We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey–Greenstein (HG) function for the scattering angle range of 0–90°. In the range of ~90–180°, the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ~90° to 145° but larger from ~145° to 180°.We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.  相似文献   

16.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

17.
Aerosol particles play important roles in a broad range of scientific disciplines, from atmospheric chemistry and physics, to the delivery of fuels for combustion and drugs to the lungs, and extending to industrial processes such as spray drying. Measurements of the light extinction, scattering and absorption by ensembles of aerosol particles can be used to non‐intrusively characterise aerosol particle samples. However, such measurements often lead to ambiguity in interpreting the properties and processes occurring on individual particles. In this review, recent developments in the use of laser based techniques to isolate and manipulate single particles and to characterise them will be highlighted. In particular, the use of cavity ring down spectroscopy, Bessel beams and optical tweezers for investigating light extinction, scattering and absorption, respectively, will be considered. The prospects for using optical techniques to interrogate the fundamental processes occurring in aerosol at the single particle level are discussed.  相似文献   

18.
The error caused by the uncertainty in the refractive index in the determination of the asymmetry parameter g is studied for a variety of mineral dust aerosol samples at two different optical wavelengths. Lorenz–Mie computations for spherical model particles are compared with results based on laboratory-measured phase functions in conjunction with a commonly used extrapolation method. The difference between the g-value based on measurements and the g-value based on Lorenz–Mie simulations is generally on the same order of magnitude as the error caused by the uncertainty in the refractive index m. For larger effective radii the error in g related to the use of spherical model particles is even larger than that related to the uncertainty in m. This indicates that the use of spherical model particles can be among the major error sources in the determination of the asymmetry parameter of dust aerosols.  相似文献   

19.
We perform the optical constants measurements for different absorption dense media by low-coherence dynamic light scattering (DLS) technique. The estimated particle size is used to calculate the scattering coefficient of particles suspended in dense media. The path-length resolved intensity distributions of light backscattered from the absorbing dense media are investigated experimentally by virtue of path-length resolved performance in low-coherence DLS measurements. The absorption coefficient can be obtained by applying the measured path-length resolved intensity distributions to the modified Lambert-Beer law. As a result, we proposed a new low-coherence DLS technique in simultaneous measurement of the scattering and absorption coefficients of absorbing dense media.  相似文献   

20.
外混合气溶胶粒子光散射的等效性   总被引:8,自引:2,他引:6  
饶瑞中 《光学学报》1996,16(8):099-1108
以两种典型的气溶胶粒子组成的单分散和多分散处理混合气溶胶粒子系统的光散射的各效率因子,各散射截面和散射相函数分析了以等效折射率描述由具有不同折射率的各种粒子组成的混合气溶胶粒子系统的适用性,结果表明,对单分散系统,本不同的混合比下对于许多尺度参数吸收效率因子和散射相函数的等效性很差,对多分散系统,在不同的混合比下等效性较稳定但各散射光学量的余差很大,因而对多分散系外混合气溶胶粒子系统如使用等效折射  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号