首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Novel SHG effective inorganic open-framework chalcohalides, Ba(3)AGa(5)Se(10)Cl(2) (A = Cs, Rb and K), have been synthesized by high temperature solid state reactions. These compounds crystallize in the tetragonal space group I ?4 (No.82) with a = b = 8.7348(6) - 8.6341(7) ?, c = 15.697(3) - 15.644(2) ?, V = 1197.6(3) - 1166.2(2) ?(3) on going from Cs to K. The polar framework of (3)(∞)[Ga(5)Se(10)](5-) is constructed by nonpolar GaSe(4)(5- )tetrahedron (T1) and polar supertetrahedral cluster Ga(4)Se(10)(8-) (T2) in a zinc-blende topological structure with Ba/A cations and Cl anions residing in the tunnels. Remarkably, Ba(3)CsGa(5)Se(10)Cl(2) exhibits the strongest intensity at 2.05 μm (about 100 times that of the benchmark AgGaS(2) in the particle size of 30-46 μm) among chalcogenides, halides, and chalcohalides. Furthermore, these compounds are also the first open-framework compounds with red photoluminescent emissions. The Vienna ab initio theoretical studies analyze electronic structures and linear and nonlinear optical properties.  相似文献   

2.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

3.
Lam R  Mar A 《Inorganic chemistry》1996,35(24):6959-6963
The new Zintl phase dibarium tritin hexaantimonide, Ba(2)Sn(3)Sb(6) has been synthesized, and its structure has been determined by single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group -Pnma with a = 13.351(1) ?, b = 4.4100(5) ?, c = 24.449(3) ?, and Z = 4 (T = -50 degrees C). The structure of Ba(2)Sn(3)Sb(6) comprises large channels [010] defined by 30-membered rings constructed from an anionic framework. This framework is built up from Sn-centered trigonal pyramids and tetrahedra, as well as zigzag chains of Sb atoms. Within the channels reside the Ba(2+) cations and additional isolated zigzag Sb-Sb chains. The simultaneous presence of Sn trigonal pyramids and tetrahedra implies that Ba(2)Sn(3)Sb(6) is a mixed-valence compound whose oxidation state notation can be best represented as (Ba(2+))(2)[(Sn(II))(2)(Sn(IV))(Sb(-)(III))(3)(Sb(-)(I))](2)(-)[(Sb(-)(I))(2)](2)(-).  相似文献   

4.
Liu JW  Wang P  Chen L 《Inorganic chemistry》2011,50(12):5706-5713
Three semiconducting ternary sulfides have been synthesized from the mixture of elements with about 20% excess of sulfur (to establish oxidant rich conditions) by solid-state reactions at high temperature. Ba(12)In(4)S(19) ≡ (Ba(2+))(12)(In(3+))(4)(S(2-))(17)(S(2))(2-), 1, crystallizes in the trigonal space group R ?3 with a = 9.6182(5) ?, b = 9.6182(5) ?, c = 75.393(7) ?, and Z = 6, with a unique long period-stacking structure of a combination of monometallic InS(4) tetrahedra, linear dimeric In(2)S(7) tetrahedra, disulfide S(2)(2-) anions, and isolated sulfide S(2-) anions that is further enveloped by Ba(2+) cations. Ba(4)In(2)S(8) ≡ (Ba(2+))(4)(In(3+))(2)(S(2-))(6)(S(2))(2-), 2, crystallizes in the triclinic space group P ?1? with a = 6.236(2) ?, b = 10.014(4) ?, c = 13.033(5) ?, α = 104.236(6)°, β = 90.412(4)°, γ = 91.052(6)°, and Z = 2. Ba(4)Ga(2)S(8) ≡ (Ba(2+))(4)(Ga(3+))(2)(S(2-))(6)(S(2))(2-), 3, crystallizes in the monoclinic P2(1)/c with a = 12.739(5) ?, b = 6.201(2) ?, c = 19.830(8) ?, β = 104.254(6)° and Z = 4. Compounds 2 and 3 represent the first one-dimensional (1D) chain structure in ternary Ba/M/S (M = In, Ga) systems. The optical band gaps of 1 and 3 are measured to be around 2.55 eV, which agrees with their yellow color and the calculation results. The CASTEP calculations also reveal that the disulfide S(2)(2-) anions in 1-3 contribute mainly to the bottom of the conduction bands and the top of valence bands, and thus determine the band gaps.  相似文献   

5.
The reaction of Pb and Eu with a molten mixture of A(2)Se/P(2)Se(5)/Se produced the quaternary compounds APbPSe(4), A(4)Pb(PSe(4))(2) (A = Rb,Cs), and K(4)Eu(PSe(4))(2). The red crystals of APbPSe(4) are stable in air and water. The orange crystals of A(4)Pb(PSe(4))(2) and K(4)Eu(PSe(4))(2) disintegrate in water and over a long exposure to air. CsPbPSe(4) crystallizes in the orthorhombic space group Pnma (No. 62) with a = 18.607(4) ?, b = 7.096(4) ?, c = 6.612(4) ?, and Z = 4. Rb(4)Pb(PSe(4))(2) crystallizes in the orthorhombic space group Ibam (No. 72) with a = 19.134(9) ?, b = 9.369(3) ?, c = 10.488(3) ?, and Z = 4. The isomorphous K(4)Eu(PSe(4))(2) has a = 19.020(4) ?, b = 9.131(1) ?, c = 10.198(2) ?, and Z = 4. The APbPSe(4) have a layered structure with [PbPSe(4)](n)()(n)()(-) layers separated by A(+) ions. The coordination geometry around Pb is trigonal prismatic. The layers are composed of chains of edge sharing trigonal prisms running along the b-direction. [PSe(4)](3)(-) tetrahedra link these chains along the c-direction by sharing edges and corners with the trigonal prisms. A(4)M(PSe(4))(2) (M = Pb, Eu) has an one-dimensional structure in which [M(PSe(4))(2)](n)()(n)()(-) chains are separated by A(+) ions. The coordination geometry around M is a distorted dodecahedron. Two [PSe(4)](3)(-) ligands bridge two adjacent metal atoms, using three selenium atoms each, forming in this way a chain along the c-direction. The solid state optical absorption spectra of the compounds are reported. All compounds melt congruently in the 597-620 degrees C region.  相似文献   

6.
The new compounds Rb(3)(AlQ(2))(3)(GeQ(2))(7) [Q = S (1), Se (2)] feature the 3D anionic open framework [(AlQ(2))(3)(GeQ(2))(7)](3-) in which aluminum and germanium share tetrahedral coordination sites. Rb ions are located in channels formed by the connection of 8, 10, and 16 (Ge/Al)S(4) tetrahedra. The isostructural sulfur and selenium derivatives crystallize in the space group P2(1)/c. 1: a = 6.7537(3) ?, b = 37.7825(19) ?, c = 6.7515(3) ?, and β = 90.655(4)°. 2: a = 7.0580(5) ?, b = 39.419(2) ?, c = 7.0412(4) ?, β = 90.360(5)°, and Z = 2 at 190(2) K. The band gaps of the congruently melting chalcogenogermanates are 3.1 eV (1) and 2.4 eV (2).  相似文献   

7.
A new layered indium selenide, [C(7)H(10)N][In(3)Se(5)] (1), has been prepared solvothermally using 3,5-dimethylpyridine as a solvent and structure-directing agent. This material, which was characterized by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV-vis diffuse-reflectance spectroscopy, IR spectroscopy, and elemental analysis, crystallizes in the monoclinic space group P2(1)/c [a = 3.9990(4) ?, b = 16.7858(15) ?, c = 23.930(2) ?, and β = 94.728(4)°]. The crystal structure of 1 contains anionic layers of stoichiometry [In(3)Se(5)](-) in which indium atoms with octahedral and tetrahedral coordination coexist. The [In(3)Se(5)](-) layers are interspaced by monoprotonated 3,5-dimethylpyridinium cations. A closely related material, [C(7)H(10)N][In(3)Se(5)] (2), was obtained when using 2,6-dimethylpyridine instead of 3,5-dimethylpyridine.  相似文献   

8.
The first two members in alkaline-earth/group XI/group XIII/chalcogen system, namely Ba(2)AgInS(4) and Ba(4)AgGa(5)Se(12), were synthesized along with a Li analogue Ba(4)LiGa(5)Se(12). Ba(2)AgInS(4) crystallizes in space group P2(1)/c. It contains [AgInS(4)](4-) layers built from AgS(3) triangles and InS(4) tetrahedra with Ba(2+) cations inserted between the layers. Ba(4)AgGa(5)Se(12) and Ba(4)LiGa(5)Se(12) adopt two closely-related structure types in space group P4[combining macron]2(1)c with structural difference originating from the different positions of Ag and Li in them. The three-dimensional framework in Ba(4)AgGa(5)Se(12) is composed of GaSe(4) tetrahedra with the Ba and Ag atoms occupying the large and small channels respectively, whereas that in Ba(4)LiGa(5)Se(12) is built from LiSe(4) and GaSe(4) tetrahedra with channels to accommodate the Ba atoms. As deduced from the diffuse reflectance spectra measurement, the optical band gaps were 2.32 (2) eV, 2.52 (2) eV, and 2.65 (2) eV for Ba(2)AgInS(4), Ba(4)AgGa(5)Se(12), and Ba(4)LiGa(5)Se(12), respectively.  相似文献   

9.
Face-capped octahedral [Re(6)Se(8)(CN)(6)](3-/4-) clusters are used in place of octahedral [M(CN)(6)](3-/4-) complexes for the synthesis of microporous Prussian blue type solids with adjustable porosity. The reaction between [Fe(H(2)O)(6)](3+) and [Re(6)Se(8)(CN)(6)](4-) in aqueous solution yields, upon heating, Fe(4)[Re(6)Se(8)(CN)(6)](3).36H(2)O (4). A single-crystal X-ray analysis confirms the structure of 4 to be a direct expansion of Prussian blue (Fe(4)[Fe(CN)(6)](3).14H(2)O), with [Re(6)Se(8)(CN)(6)](4-) clusters connected through octahedral Fe(3+) ions in a cubic three-dimensional framework. As in Prussian blue, one out of every four hexacyanide units is missing from the structure, creating sizable, water-filled cavities within the neutral framework. Oxidation of (Bu(4)N)(4)[Re(6)Se(8)(CN)(6)] (1) with iodine in methanol produces (Bu(4)N)(3)[Re(6)Se(8)(CN)(6)] (2), which is then metathesized to give the water-soluble salt Na(3)[Re(6)Se(8)(CN)(6)] (3). Reaction of [Co(H(2)O)(6)](2+) or [Ni(H(2)O)(6)](2+) with 3 in aqueous solution affords Co(3)[Re(6)Se(8)(CN)(6)](2).25H(2)O (5) or Ni(3)[Re(6)Se(8)(CN)(6)](2).33H(2)O (6). Powder X-ray diffraction data show these compounds to adopt structures based on the same cubic framework present in 4, but with one out of every three cluster hexacyanide units missing as a consequence of charge balance. In contrast, reaction of [Ga(H(2)O)(6)](3+) with 3 gives Ga[Re(6)Se(8)(CN)(6)].6H(2)O (7), wherein charge balance dictates a fully occupied cubic framework enclosing much smaller cavities. The expanded Prussian blue analogues 4-7 can be fully dehydrated, and retain their crystallinity with extended heating at 250 degrees C. Consistent with the trend in the frequency of framework vacancies, dinitrogen sorption isotherms show porosity to increase along the series of representative compounds 7, Ga(4)[Re(6)Se(8)(CN)(6)](3).38H(2)O, and 6. Furthermore, all of these phases display a significantly higher sorption capacity and surface area than observed in dehydrated Prussian blue. Despite incorporating paramagnetic [Re(6)Se(8)(CN)(6)](3-) clusters, no evidence for magnetic ordering in compound 6 is apparent at temperatures down to 5 K. Reactions related to those employed in preparing compounds 4-6, but carried out at lower pH, produce the isostructural phases H[cis-M(H(2)O)(2)][Re(6)Se(8)(CN)(6)].2H(2)O (M = Fe (8), Co (9), Ni (10)). The crystal structure of 8 reveals a densely packed three-dimensional framework in which [Re(6)Se(8)(CN)(6)](4-) clusters are interlinked through a combination of protons and Fe(3+) ions.  相似文献   

10.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

11.
An unusual compound, Ba4SiSb2Se11, was discovered from a reaction of Ba/Th/Sb/Se. It is assumed that Si was extracted from the silica reaction tube. It forms as silver needlelike crystals in the polar space group Cmc2(1) with a = 9.3981(3) A, b = 25.7192(7) A, c = 8.7748(3) A, and Z = 4. A rational synthesis has been devised at 600 degrees C. The compound is composed of Ba2+ ions stabilized between infinite one-dimensional [SiSb2Se11]8- chains running parallel to the a axis. Each chain is composed of a [SbSe2]- infinity backbone with [SiSe4]4- tetrahedra chelating every other Sb atom from the same side of the backbone. The V-shaped triselenide groups, (Se3)2-, are attached to the rest of the Sb atoms in the chain through one of their terminal Se atoms. The compound has a band gap of 1.43 eV. The Raman spectrum shows a broad shift at 247 cm-1 and a shoulder around 234 cm-1, which are related to the Se-Se vibration of the triselenide groups and/or the Si-Se vibrations of the [SiSe4]4- groups. The compound decomposes at 522 degrees C.  相似文献   

12.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

13.
Sekar P  Ibers JA 《Inorganic chemistry》2004,43(17):5436-5441
Several mixed Te/Se polychalcogenide anions [Te(m)Se(n)](2-) were synthesized at 293 K by reactions between Te(n)(2-)and Se(n)(2-) anions in N,N-dimethylformamide (DMF) in the presence of different-size ammonium or phosphonium cations, in some cases in the presence of metal species. The structures of these anions were determined by single-crystal X-ray diffraction methods. The crystal structures of [NEt(4)](2)[Te(3)Se(6)] (1) and [NEt(4)](2)[Te(3)Se(7)] (2) consist, respectively, of one-dimensional infinite 1(infinity)[Te(3)Se(6)(2-)] and 1(infinity)[Te(3)Se(7)(2-)] anionic chains separated by NEt(4)(+) cations. In compound 1, each chain comprises Te(3)Se(5) eight-membered rings bridged by Se atoms. The Te(3)Se(5) ring has an "open book" conformation. The NMR spectrum of a DMF solution of [NEt(4)](2)[Te(3)Se(6)] crystals at 223 K shows (77)Se resonances at delta = 290, 349, and 771 ppm and a single (125)Te resonance at delta = 944.7 ppm. In compound 2, each chain comprises Te(3)Se(6) five- and six-membered rings bridged by Se atoms. The Te(3)Se(6) ring can be regarded as an inorganic analogue of bicyclononane. The anion of [PPh(4)](2)[Te(2)Se(2)] (4) contains a Se-Te-Te-Se chain with the terminal Se atoms trans to one another. The new compounds [PPN](2)[TeSe(10)] (3), [NMe(4)](2)[TeSe(3)].DMF (5), and [NEt(4)](2)[TeSe(3)] (6) contain known anions.  相似文献   

14.
Single crystals of [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-) and CuNb(py)(4)OF(5) were synthesized in a (HF)(x)().pyridine/pyridine/water solution (150 degrees C, 24 h, autogeneous pressure) using CuO and Nb(2)O(5) as reagents. The compound [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-) contains clusters of [CuNb(2)(py)(4)O(2)F(10)](2)(-) anions linked through N-H(+).F hydrogen bonds to the [pyH(+)] cations. In contrast CuNb(py)(4)OF(5) is a unidimensional compound consisting only of chains, perpendicular to the c axis, of alternating [Cu(py)(4)(O/F)(2/2)](0.5+) and [NbF(4)(O/F)(2/)(2)](0.5)(-) octahedra. The chains change direction between the [110] and [1&onemacr;0] every c/2. Crystal data for [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-): tetragonal, space group I4(1)22 (No. 98),with a = 11.408(3) ?, c = 30.36(1) ?, and Z = 4. Crystal data for CuNb(py)(4)OF(5): monoclinic, space group C2/c (No. 15), with a = 10.561(3) ?, b = 13.546(6) ?, c = 16.103(4) ?, beta = 97.77(2) degrees, and Z = 4.  相似文献   

15.
Reaction of antimony, selenium, and selenium(IV) chloride in the Lewis acidic ionic liquid [BMIM]Cl/AlCl3 (BMIM: 1‐n‐butyl‐3‐methylimidazolium) at room temperature yielded air‐sensitive black block‐shaped crystals of [Sb10Se10][AlCl4]2. The triclinic unit cell (space group ${P\bar 1}Reaction of antimony, selenium, and selenium(IV) chloride in the Lewis acidic ionic liquid [BMIM]Cl/AlCl(3) (BMIM: 1-n-butyl-3-methylimidazolium) at room temperature yielded air-sensitive black block-shaped crystals of [Sb(10)Se(10)][AlCl(4)](2). The triclinic unit cell (space group P1, a=947.85(2), b=957.79(2), c=1166.31(3)?pm; α=103.622(1), β=110.318(1), γ=99.868(1)°; Z=1) contains the first mixed antimony/selenium polycation, [Sb(10)Se(10)](2+). The centrosymmetric polycyclic cation consists of two realgar-like [Sb(4)Se(4)] cages, which are connected through positively charged, three-bonded selenium atoms with a central [Sb(2)Se(2)] ring. Quantum chemical calculations predict semiconducting behavior of the compound and indicate primarily covalent bonding with varying ionic contribution within the [Sb(10)Se(10)](2+) polycation, while the interactions between the polycation and the [AlCl(4)](-) anions are predominantly ionic. The applicability of the Zintl concept to the chemical bonding in the heteronuclear polycation was evaluated by a thorough quantum chemical analysis.  相似文献   

16.
Pocha R  Johrendt D 《Inorganic chemistry》2004,43(21):6830-6837
The new ternary selenostannates Sr(4)Sn(2)Se(9) and Sr(4)Sn(2)Se(10) have been synthesized by heating the elements at 1023 K in an argon atmosphere. Their structures were determined by single-crystal X-ray methods. Sr(4)Sn(2)Se(9) crystallizes in a new structure type (Pbam, a = 12.042(2) A, b = 16.252(3) A, c = 8.686(2) A, Z = 4) with Sn(2)Se(6)(4-), SnSe(4)(4-), and Se(2)(2-) subunits. Sr(4)Sn(2)Se(10) (P2(1)2(1)2, a = 12.028(2) A, b = 16.541(3) A, c = 8.611(2) A, Z = 4) has a similar structure with Se(3)(2-) triangles instead of Se(2)(2-) dumbbells. Strontium is 8-fold-coordinated by selenium in both cases. The opening angles between tin and the terminal selenium atoms in the Sn(2)Se(6) subunits are close to 160 degrees , which is nearer a typical Sn(2+) coordination geometry than classical SnSe(4) tetrahedra. This result suggests the tin oxidation state in the Sn(2)Se(6) units to be lower than the expected Sn(4+). This question is examined by self-consistent LMTO and LAPW band structure calculations expanded by the Bader analysis of the charge density to assign reliable atomic charges.  相似文献   

17.
31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P(2)Se(6)](4-), [PSe(4)](3-), [P(4)Se(10)](4-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P[bond]P. The [P(2)Se(6)](4-) and [P(4)Se(10)](4-) anions both contain a P[bond]P and resonate between 25 and 95 ppm whereas the [PSe(4)](3-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions do not contain a P[bond]P and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe(4)](3-) anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe(4)](3-) anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T(1)) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T(1) does not appear to correlate with P-P bonding. (31)P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that (31)P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.  相似文献   

18.
The pyridineselenolate (2-Se-NC(5)H(4), (SePy)) and the 3-(trimethylsilyl)pyridineselenolate (3-Me(3)Si-2-Se-NC(5)H(4) (SePy)) ligands form air-stable homoleptic coordination compounds of Cu(I) { [Cu(SePy)](4) (1) and [Cu(SePy)](4) (2)} and In(III) {In(SePy)(3) (3) and In(SePy)(3) (4)}. Mass spectroscopic characterization of the Cu(I) compounds indicated a tetrametallic core, and this was confirmed with a single-crystal X-ray structural characterization of crystalline 1 and 2, which both contain a tetrametallic cluster of Cu(I) ions bound to two doubly bridging Se atoms and a pyridine nitrogen. The Cu coordination sphere is completed with two strong Cu-Cu bonds and one weaker Cu-Cu interaction. The indium compounds 3 and 4 are each distorted fac-octahedral molecules with chelating SePy ligands. These compounds are useful low-temperature precursors to the binary selenides. Both 3 and 4 sublime intact; 3 thermally decomposes to give In(2)Se(3). The Cu clusters do not sublime intact but still decompose to give metal selenide phases: 2 decomposes to give pure alpha-CuSe at low temperatures and increasing amounts of Cu(2)(-)(x)()Se at elevated temperatures, while 3 decomposes to give a mixture of CuSe phases at all temperatures. Crystal data (Mo Kalpha: 1, 153(5) K; 2-4, 293(2) K) are as follows: 1, monoclinic space group C2/c, a = 20.643(5) ?, b = 16.967(2) ?, c = 16.025(2) ?, beta = 114.16(2) degrees, Z = 8; 2, tetragonal space group I4(1)/a, a = 14.756(3) ?, c = 19.925(3) ?, Z = 4; 3, trigonal space group P&thremacr;c1, a = 13.352(2) ?, c = 13.526(2) ?, Z = 4; 4, monoclinic space group P2(1)/c, a = 9.793(1) ?, b = 20.828(6) ?, c = 16.505(1) ?, beta = 96.69(1) degrees, Z = 4.  相似文献   

19.
Using a unique three-solvent biphasic method, we have prepared and characterized three new fully conjugated, chalcogen-rich, bridged copper(II) complexes for the preparation of molecular conductors and magnetic materials, having the general formula (Bu(4)N)(2){tto[Cu(L)](2)} (tto = C(2)S(4)(2)(-) = tetrathiooxalato; L = mnt = C(4)N(2)S(2)(2)(-) = 1,2-dicyanoethene-1,2-dithiolato for complex 2, dsit = C(3)Se(2)S(3)(2)(-) = 2-thioxo-1,3-dithiole-4,5-diselenolato for complex 3, dmid = C(3)OS(4)(2)(-) = 2-oxo-1,3-dithiole-4,5-dithiolato for complex 4a). The single-crystal X-ray structures of 2 and 3 have been determined: 2, (Bu(4)N)(2){tto[Cu(mnt)](2)}, monoclinic, space group C2/m, a = 19.549(4) ?, b = 13.519(3) ?, c = 10.162(2) ?, beta = 90.33(1) degrees, Z = 2; 3, (Bu(4)N)(2){tto[Cu(dsit)](2)}, monoclinic, space group P2(1)/c, a = 9.903(1) ?, b = 15.589(1) ?, c = 18.218(1) ?, beta = 90.40(1) degrees, Z = 2. Complex 2 displays perfect planarity, while 3 shows a slight tetrahedral distortion at the metal centers, resulting in a dihedral angle of 24.86(3) degrees. Cyclic voltammetry of (Bu(4)N)(2){tto[Cu(mnt)](2)} (2), (Bu(4)N)(2){tto[Cu(dsit)](2)} (3), and (Bu(4)N)(2){tto[Cu(dmid)](2)} (4a) shows each complex to exhibit two reversible redox processes which can be attributed to {tto[Cu(L)](2)}(2)(-) right arrow over left arrow tto[Cu(L)](2)}(-) and {tto[Cu(L)](2)}(1)(-) right arrow over left arrow {tto[Cu(L)](2)}(0) couples. The structural and electronic properties of 2, 3, and 4a will be compared to those of the recently communicated analogous complex (Bu(4)N)(2){tto[Cu(dmit)](2)} (1).  相似文献   

20.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号