首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
界面剪切力作用下波状液膜流的水动力稳定性   总被引:1,自引:1,他引:0  
液膜流的水动力稳定性作为保障其高效传热传质性能的重要因素之一,受多种因素的制约和影响. 当气液界面处存在因气流流动而产生剪切力作用时,剪切力将通过改变界面处的边界条件,从而影响液膜流动的稳定性. 基于边界层理论,采用积分法建立了剪切力作用下降液膜表面波演化方程,分析了界面剪切力对水动力稳定性的影响. 研究表明,正向剪切力为不稳定性因素,反向剪切力在较小雷诺数时为不稳定因素,在大雷诺数时为稳定性因素;正向剪切力使临界波数和临界波速增大,反向剪切力使其减小;剪切力对临界波速的影响在不同雷诺数下也有所不同.   相似文献   

2.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

3.
纳米尺度边界滑移的分子动力学模拟研究   总被引:4,自引:3,他引:1  
利用分子动力学模拟方法研究了纳米尺度超薄膜润滑的边界滑移现象,分别模拟考察了固液作用势、固液密度差异和温度对滑移长度的影响.结果表明:在固液作用势较强的情况下,滑移长度随着温度的增加而增大;当固液作用势较弱时,滑移长度随着温度的增加反而下降;滑移界面上、下的层状有序化差异程度是导致滑移的主要原因;应用所建立的方法可以较好地解释不同物理参数条件下的壁面滑移问题.  相似文献   

4.
利用非平衡分子动力学模拟方法, 模拟了两无限大平行平板组成的纳米通道内的库埃特流动, 并给出了壁面润湿性和速度对流场密度、速度分布及壁面滑移的影响规律.数值模拟中, 统计系综采用微正则系综, 势能函数选用LJ/126模型, 壁面设为刚性原子壁面, 温度校正使用速度定标法, 牛顿运动方程的求解则采用文莱特算法.结果表明, 纳米通道内流体密度呈对称的衰减振荡分布, 且随壁面润湿性的降低, 振荡幅度减小, 振荡周期保持不变;滑移量随壁面润湿性的提高而降低, 甚至在亲水壁面时出现负滑移现象;随壁面速度的增加滑移速度逐渐增大, 且在流体呈现非线性流动阶段其增幅显著加大.另外, 还发现当壁面设置为超疏水性时, 壁面滑移呈现出随润湿性降低而减小的反常现象, 并基于杨氏方程对其进行了解释.  相似文献   

5.
动压载荷下受限纳米水膜流动特性的分子动力学仿真研究   总被引:1,自引:1,他引:0  
陈入领  王瑶  雷红 《摩擦学学报》2016,36(6):673-678
利用分子动力学模拟方法探究了外加载荷作用下纳米尺度受限水膜的流动特性.仿真结果表明:受限空间内的水膜随着载荷的增加,其出现分层现象和黏度增加,当黏度超过一个临界值后,在分层和黏度增加共同作用下,水膜的流动状态将由层流和湍流的混合状态过渡到单一的层流状态.同时,随着受限空间壁面的切向运动,受限水膜均会出现边界滑移现象,且随着载荷的增加,滑移现象越发显著.但当水膜单一层流状态形成后,受限空间壁面的滑移速度,对水膜的边界滑移长度影响并不显著.  相似文献   

6.
采用滑移速度壁模型实现了浸入边界方法与壁模型相结合的大涡模拟.本文首先分别采用平衡层模型和非平衡壁模型对周期山状流进行数值模拟,以考查在壁模型中考虑切向压力梯度的作用.数值结果表明,流场的压力对本文所采用的壁模型形式并不敏感,但是考虑切向压力梯度可以显著改进壁面摩擦力的计算结果,并且能够准确的预测强压力梯度区以及分离区内的流动平均统计特性.不考虑压力梯度效应的平衡层模型显著低估了壁面摩擦力的分布,同时无法准确预测分离区内的平均速度剖面.非平衡模型的修正项正比于切向压力梯度和壁面法向距离,因此在强压力梯度区或者网格较粗时,计算得到的平均压力和摩擦力分布以及流动的低阶统计量均与参考的实验和计算结果吻合.在此基础上,通过回转体绕流的大涡模拟考查了该方法用于模拟高雷诺数壁湍流的适用性,非平衡壁模型可以准确地捕捉流动的物理结构并较准确地预测其水动力学特性.结果表明,将浸入边界方法与非平衡滑移速度壁模型相结合的大涡模拟,有望成为数值模拟复杂边界高雷诺数壁湍流的工具.   相似文献   

7.
非牛顿流体在渐变管中压力和剪切应力的二次摄动解   总被引:1,自引:0,他引:1  
本文利用双摄动方法求解缓慢变化管道中Johnson-Segalman(J-S)流体流动的渐近解.将管道的扩张(或收缩)角度和粘弹性参数分别作为双摄动的参数,由流函数和涡量函数的形式,推导出压力和壁面剪切应力的渐近解.在此基础上,分析了管道角度,粘弹性参数和雷诺数等参数对压力以及剪切力影响.主要结论如下:(1) 管道扩张角度增加时,流向同一位置处径向压力以及壁面剪切应力随扩张角度减小;(2) 在同一扩张管道中,径向压力随着流向位移减小,收缩管与之相反;(3) 扩张角度与雷诺数对流场起主导作用,粘弹性系数起次要作用.  相似文献   

8.
采用滑移速度壁模型实现了浸入边界方法与壁模型相结合的大涡模拟.本文首先分别采用平衡层模型和非平衡壁模型对周期山状流进行数值模拟,以考查在壁模型中考虑切向压力梯度的作用.数值结果表明,流场的压力对本文所采用的壁模型形式并不敏感,但是考虑切向压力梯度可以显著改进壁面摩擦力的计算结果,并且能够准确的预测强压力梯度区以及分离区内的流动平均统计特性.不考虑压力梯度效应的平衡层模型显著低估了壁面摩擦力的分布,同时无法准确预测分离区内的平均速度剖面.非平衡模型的修正项正比于切向压力梯度和壁面法向距离,因此在强压力梯度区或者网格较粗时,计算得到的平均压力和摩擦力分布以及流动的低阶统计量均与参考的实验和计算结果吻合.在此基础上,通过回转体绕流的大涡模拟考查了该方法用于模拟高雷诺数壁湍流的适用性,非平衡壁模型可以准确地捕捉流动的物理结构并较准确地预测其水动力学特性.结果表明,将浸入边界方法与非平衡滑移速度壁模型相结合的大涡模拟,有望成为数值模拟复杂边界高雷诺数壁湍流的工具.  相似文献   

9.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.   相似文献   

10.
黏度对流固界面滑移影响的试验研究   总被引:3,自引:1,他引:2  
为了研究微纳米间隙下固液界面间流体的流动及输运特性,本文改进了商用的原子力显微镜,并利用其对微纳米间隙下固液界面的边界滑移现象进行了试验研究,重点考察了流体黏度对边界滑移的影响.固体壁面样品采用Si(100)表面,试验液体采用不同黏度的去离子水和蔗糖溶液.结果表明,Si(100)表面与去离子水和蔗糖溶液作用会发生边界滑移,而且随着溶液黏度的升高,滑移长度也随之升高,表现了边界滑移与流体黏度的相关性.所得结果对于微流体输运与控制有重要的理论意义与实际价值.  相似文献   

11.
The slip flow due to a stretching cylinder is studied. A similarity transform reduces the Navier-Stokes equations to a set of non-linear ordinary differential equations. Asymptotic solutions for large Reynolds number and small slip show the problem can be related to the existing two-dimensional stretching cases. Due to algebraic decay, the equations are further transformed through a compressed variable, and then integrated numerically. It is found that slip greatly reduces the magnitudes of the velocities and the shear stress.  相似文献   

12.
The no‐slip condition is an assumption that cannot be derived from first principles and a growing number of literatures replace the no‐slip condition with partial‐slip condition, or Navier‐slip condition. In this study, the influence of partial‐slip boundary conditions on the laminar flow properties past a circular cylinder was examined. Shallow‐water equations are solved by using the finite element method accommodating SU/PG scheme. Four Reynolds numbers (20, 40, 80, and 100) and six slip lengths were considered in the numerical simulation to investigate the effects of slip length and Reynolds number on characteristic parameters such as wall vorticity, drag coefficient, separation angle, wake length, velocity distributions on and behind the cylinder, lift coefficient, and Strouhal number. The simulation results revealed that as the slip length increases, the drag coefficient decreases since the frictional component of drag is reduced, and the shear layer developed along the cylinder surface tends to push the separation point away toward the rear stagnation point so that it has larger separation angle than that of the no‐slip condition. The length of the wake bubble zone was shortened by the combined effects of the reduced wall vorticity and wall shear stress which caused a shift of the reattachment point closer to the cylinder. The frequency of the asymmetrical vortex formation with partial slip velocity was increased due to the intrinsic inertial effect of the Navier‐slip condition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible,and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability,Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.  相似文献   

14.
This paper extends the existing studies of heat convection by an external flow impinging upon a flat porous insert to that on a circular cylinder inside a porous medium. The surface of the cylinder is subject to constant temperature and can include uniform or non-uniform transpiration. These cylindrical configurations are introduced in the analyses of stagnation-point flows in porous media for the first time. The equations governing steady transport of momentum and thermal energy in porous media are reduced to simpler nonlinear differential equations and subsequently solved numerically. This reveals the dimensionless velocity and temperature fields of the stagnation-point flow, as well as the Nusselt number and shear stress on the surface of the cylinder. The results show that transpiration on the surface of the cylinder and Reynolds number of the external flow dominate the fluid dynamics and heat transfer problems. In particular, non-uniform transpiration is shown to significantly affect the thermal and hydrodynamic responses of the system in the circumferential direction. However, the permeability and porosity of the porous medium are found to have relatively smaller influences.  相似文献   

15.
A steady rarefied gas flow with Mach number of the order of unity around a body or bodies is considered. The general behaviour of the gas for small Knudsen numbers is studied by asymptotic analysis of the boundary-value problem of the Boltzmann equation for a general domain. The effect of gas rarefaction (or Knudsen number) is expressed as a power series of the square root of the Knudsen number of the system. A series of fluid-dynamic type equations and their associated boundary conditions that determine the component functions of the expansion of the density, flow velocity, and temperature of the gas is obtained by the analysis. The equations up to the order of the square root of the Knudsen number do not contain non-Navier–Stokes stress and heat flow, which differs from the claim by Darrozes (in Rarefied Gas Dynamics, Academic Press, New York, 1969). The contributions up to this order, except in the Knudsen layer, are included in the system of the Navier–Stokes equations and the slip boundary conditions consisting of tangential velocity slip due to the shear of flow and temperature jump due to the temperature gradient normal to the boundary.  相似文献   

16.
The present work concerns the momentum and heat transmission of the electro-magnetohydrodynamic(E-MHD) boundary layer Darcy-Forchheimer flow of a Sutterby fluid over a linear stretching sheet with slip. The nonlinear equations for the proposed model are analyzed numerically. Suitable techniques are used to transform the coupled nonlinear partial differential equations(PDEs) conforming to the forced balance law, energy, and concentration equations into a nonlinear coupled system of ordinary differential equations(ODEs). Numerical solutions of the transformed nonlinear system are obtained using a shooting method, improved by the Cash and Carp coefficients. The influence of important physical variables on the velocity, the temperature, the heat flux coefficient, and the skin-friction coefficient is verified and analyzed through graphs and tables. From the comprehensive analysis of the present work, it is concluded that by intensifying the magnitude of the Hartmann number, the momentum distribution decays,whereas the thermal profile of fluid increases. Furthermore, it is also shown that by augmenting the values of the momentum slip parameter, the velocity profile diminishes. It is found that the Sutterby fluid model shows shear thickening and shear thinning behaviors.The momentum profile shows that the magnitude of velocity for the shear thickening case is dominant as compared with the shear thinning case. It is also demonstrated that the Sutterby fluid model reduces to a Newtonian model by fixing the fluid parameter to zero.In view of the limiting case, it is established that the surface drag in the case of the Sutterby model shows a trifling pattern as compared with the classical case.  相似文献   

17.
We solve analytically the cessation flows of a Newtonian fluid in circular and plane Couette geometries assuming that wall slip occurs provided that the wall shear stress exceeds a critical threshold, the slip yield stress. In steady-state, slip occurs only beyond a critical value of the angular velocity of the rotating inner cylinder in circular Couette flow or of the speed of the moving upper plate in plane Couette flow. Hence, in cessation, the classical no-slip solution holds if the corresponding wall speed is below the critical value. Otherwise, slip occurs only initially along both walls. Beyond a first critical time, slip along the fixed wall ceases, and beyond a second critical time slip ceases also along the initially moving wall. Beyond this second critical time no slip is observed and the decay of the velocity is faster. The velocity decays exponentially in all regimes and the decay is reduced with slip. The effects of slip and the slip yield stress are discussed.  相似文献   

18.
In this paper, viscous flow and heat transfer over an unsteady stretching surface is investigated with slip conditions. A system of non-linear partial differential equations is derived and transformed to ordinary differential equations with help of similarity transformations. Numerical computations are carried out for different values of the parameters involved and the analysis of the results obtained shows that the flow field is influenced appreciably by the unsteadiness, and the velocity slip parameter. With increasing values of the unsteadiness parameter, fluid velocity and the temperature are found to decrease in both the presence and absence of slip at the boundary. Fluid velocity decreases due to increasing values of the velocity slip parameter resulting in an increase in the temperature field. Skin-friction decreases with the velocity slip parameter whereas it increases with unsteadiness parameter. The rate of heat transfer decreases with the velocity slip parameter while increases with unsteadiness parameter. Same feature is also noticed for thermal slip parameter.  相似文献   

19.
The continuous extrusion of a metallocene linear low-density polyethylene through a transparent capillary die with and without slip was analyzed in this work by rheometrical measurements and particle image velocimetry (PIV). For this reason, a comparison was made between the rheological behaviors of the pure polymer and blended with a small amount of fluoropolymer polymer processing additive. Very good agreement was found between rheometrical and PIV measurements. The pure polymer exhibited stick-slip instabilities with nonhomogeneous slip at the die wall, whereas the blend showed stable flow. The slip velocity was measured directly from the velocity profiles and was negligible for the pure polymer before the stick-slip but increased monotonously as a function of the shear stress for the blend. The flow curves and the slip velocity as a function of the shear stress deviated from a power law and were well fitted by continuous “kink” functions. Comparison of PIV data with rheometrical ones permitted a direct proof of the basic assumption of the Mooney theory. Finally, the analysis of the velocity profiles showed that there is a maximum in the contribution of slip to the average fluid velocity, which is interpreted as the impossibility for the velocity profile to become plug like in the presence of shear thinning.  相似文献   

20.
Evaluation of wall slip phenomena during the horizontal pipeline flow of air/lubricating grease mixtures was investigated. With this aim, pressure drop measurements have been carried out along pipelines with different diameter and roughness. A modified Jastrzebski's equation for the slip velocity, based on the introduction of the relative roughness, has been used to correct wall slip effects for a lithium lubricating grease/air system. This expression has been introduced in the classical Rabinowitsch–Mooney treatment and applied to the superficial liquid velocity instead of the single-phase average velocity following a single-phase treatment analogy. Thus, the non-slip flow curve data for the two-phase mixture were obtained from roughened pipes and compared with those obtained from pipes with smooth internal surfaces. The effect of air on the extension of wall slip has been established as a function of air flow rate. Thus, the consideration of the reduction of the wetted pipe surface as air is injected allows an adequate explanation of this phenomenon, confirmed by the reduction of the effective slip contribution on the observed apparent shear rate. A power-law relationship between the slip velocity and the wall shear stress has been deduced, although this tends asymptotically to linearity as air flow rate is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号