首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unique electronic and mechanical properties, of graphene make it an ideal material for nanoelectromechanical system (NEMS) applications. Here, a miniature optical fiber current sensor based on a quasistatic graphene NEMS with a graphene membrane covering the hole on a pre‐etched fiber tip and two gold electrodes on opposite sides of the tip has been demonstrated. The sensor overcomes the shortcomings of conventional optical fiber current sensors based on thermal effects, such as relatively low sensitivity, long response time, and huge device size; it has simultaneously a high sensitivity of 2.2 × 105 nm/A2, a short response time of ∼0.25 s and a compact device size of ∼15 μm, and has found practical application. Using a smaller graphene membrane with better quality can reduce the response time to submillisecond levels with a more precise measurement system. The sensor presented in this paper may pave the way for the practical usage of optical fiber current sensors based on thermal effects.

  相似文献   


2.
Nanostructures that feature nonreciprocal light transmission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic‐crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demonstrated, showing very efficient optical diode functionality. The key novelty of the structure is the use of cavity‐enhanced material nonlinearities in combination with spatial symmetry breaking and a Fano resonance to realize nonreciprocal propagation effects at ultralow power and with good wavelength tunability. The nonlinearity of the device relies on ultrafast carrier dynamics, rather than the thermal effects usually considered, allowing the demonstration of nonreciprocal operation at a bit‐rate of 10 Gbit s−1 with a low energy consumption of 4.5 fJ bit−1.

  相似文献   


3.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


4.
5.
Optical waveguide theory is an established part of optical physics. Yet only recently have fundamental phenomena such as spatial eigenmodes and principal modes been demonstrated experimentally. This work leverages recently developed techniques enabling detailed spatiotemporal characterisation of multimode fibre to provide new insights into the fundamentals of fibre propagation. This paper presents detailed analysis of all 420 of a fibre's principal modes and spatial eigenmodes and compares the similarity and differences between these two phenomena. It was found that even over very short lengths, the principal modes can not only significantly suppress modal dispersion but are also a more physically meaningful basis than spatial eigenmodes.

  相似文献   


6.
7.
Optically levitated nanodiamonds with nitrogen‐vacancy centers promise a high‐quality hybrid spin‐optomechanical system. However, the trapped nanodiamond absorbs energy from laser beams and causes thermal damage in vacuum. It is proposed here to solve the problem by trapping a composite particle (a nanodiamond core coated with a less absorptive silica shell) at the center of strongly focused doughnut‐shaped laser beams. Systematical study on the trapping stability, heat absorption, and oscillation frequency concludes that the azimuthally polarized Gaussian beam and the linearly polarized Laguerre‐Gaussian beam LG03 are the optimal choices. With our proposal, particles with strong absorption coefficients can be trapped without obvious heating and, thus, the spin‐optomechanical system based on levitated nanodiamonds are made possible in high vacuum with the present experimental techniques.

  相似文献   


8.
A mid‐infrared (MIR) supercontinuum (SC) has been demonstrated in a low‐loss telluride glass fiber. The double‐cladding fiber, fabricated using a novel extrusion method, exhibits excellent transmission at 8–14 μm: < 10 dB/m in the range of 8–13.5 μm and 6 dB/m at 11 μm. Launched intense ultrashort pulsed with a central wavelength of 7 μm, the step‐index fiber generates a MIR SC spanning from ∼2.0 μm to 16 μm, for a 40‐dB spectral flatness. This is a fresh experimental demonstration to reveal that telluride glass fiber can emit across the all MIR molecular fingerprint region, which is of key importance for applications such as diagnostics, gas sensing, and greenhouse CO2 detection.

  相似文献   


9.
Monocrystalline titanium dioxide (TiO2) micro‐spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii m through near‐field time‐domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub‐wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro‐resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all‐dielectric metamaterial technology.

  相似文献   


10.
The notion that Stimulated Brillouin Scattering (SBS) is primarily defined by bulk material properties has been overturned by recent work on nanoscale waveguides. It is now understood that boundary forces of radiation pressure and electrostriction appearing in such highly confined waveguides can make a significant contribution to the Brillouin gain. Here, this concept is extended to show that gain enhancement does not require nanoscale or subwavelength features, but generally appears where optical and acoustic fields are simultaneously confined near a free surface or material interface. This situation routinely occurs in whispering gallery resonators (WGRs), making gain enhancements much more accessible than previously thought. To illustrate this concept, the first full‐vectorial analytic model for SBS in WGRs is developed, including optical boundary forces, and the SBS gain in common silica WGR geometries is computationally evaluated. These results predict that gains 104 times greater than the predictions of scalar theory may appear in WGRs even in the 100 μm size range. Further, trapezoidal cross‐section microdisks can exhibit very large SBS gains approaching 102 m−1W−1. With resonant amplification included, extreme gains on the order of 1012 m−1W−1 may be realized, which is 108 times greater than the highest predicted gains in linear waveguide systems.

  相似文献   


11.
The broadband enhancement of single‑photon emission from nitrogen‐vacancy centers in nanodiamonds coupled to a planar multilayer metamaterial with hyperbolic dispersion is studied experimentally. The metamaterial is fabricated as an epitaxial metal/dielectric superlattice consisting of CMOS‐compatible ceramics: titanium nitride (TiN) and aluminum scandium nitride (AlxSc1‐xN). It is demonstrated that employing the metamaterial results in significant enhancement of collected single‑photon emission and reduction of the excited‐state lifetime. Our results could have an impact on future CMOS‐compatible integrated quantum sources.

  相似文献   


12.
Microresonator‐based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase‐locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve conversion efficiency ( on‐chip comb power excluding the pump) in the fiber telecommunication band with broadband mode‐locked dark‐pulse combs. We present a general analysis on the efficiency which is applicable to any phase‐locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time‐domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  相似文献   


13.
A novel approach to facilitate excitation and readout processes of isolated negatively charged nitrogen‐vacancy (NV) centers is proposed. The approach is based on the concept of all‐dielectric nanoantennas. It is shown that the all‐dielectric nanoantenna can significantly enhance both the emission rate and emission extraction efficiency of a photoluminescence signal from a single NV center in a diamond nanoparticle on a dielectric substrate. The proposed approach provides high directivity, large Purcell factor, and efficient beam steering, thus allowing an efficient far‐field initialization and readout of several NV centers separated by subwavelength distances.

  相似文献   


14.
This paper investigates the singular optics of nonparaxial light beams in the near field when the light behaves as a tractor beam. New insights into the optical pulling force, which is usually represented by integrating the stress tensor at a black box enclosing the object, are interpreted by the optical singularity of the Poynting vector. The negative nonconservative pulling force originates from the transfer of the azimuthal Poynting vector to the longitudinal component partly owing to the presence of a scatterer. The separatrice pattern and singularity shifts of the Poynting vector unanimously exhibit a differentiable near‐field distribution in the presence of optical pulling force. A new method is established to calculate the near‐field optical force using the differential Poynting vector in the far field. The results obtained provide a clear physical interpretation of the light–matter interaction and manifest the significance of singular optics in manipulating objects.

  相似文献   


15.
The feasibility of realizing a photonic Floquet topological insulator (PFTI) in an atomic ensemble is demonstrated. The interference of three coupling fields will split energy levels periodically, to form a periodic refractive index structure with honeycomb profile that can be adjusted by different frequency detunings and intensities of the coupling fields. This in turn will affect the appearance of Dirac cones in momentum space. When the honeycomb lattice sites are helically ordered along the propagation direction, gaps open at Dirac points, and one obtains a PFTI in an atomic vapor. An obliquely incident beam will be able to move along the zigzag edge of the lattice without scattering energy into the PFTI, due to the confinement of edge states. The appearance of Dirac cones and the formation of a photonic Floquet topological insulator can be shut down by the third‐order nonlinear susceptibility and opened up by the fifth‐order one.

  相似文献   


16.
The coupling of atomic and photonic resonances serves as an important tool for enhancing light‐matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic‐cladding wave guides, the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator is experimentally demonstrated. Specifically, cavity‐atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances is observed. Moreover, significant enhancement of the efficiency of all optical switching in the V‐type pump‐probe scheme is demonstrated. The coupled system of micro‐ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, dispersion engineering (e.g. slow and fast light) and metrology, as well as for the observation of important effects such as strong coupling, and Purcell enhancement.

  相似文献   


17.
Narrow‐linewidth lasers are key elements in optical metrology and spectroscopy. Spectral purity of these lasers determines accuracy of the measurements and quality of collected data. Solid state and fiber lasers are stabilized to relatively large and complex external optical cavities or narrow atomic and molecular transitions to improve their spectral purity. While this stabilization technique is rather generic, its complexity increases tremendously moving to longer wavelenghts, to the infrared (IR) range. Inherent increase of losses of optical materials at longer wavelengths hinders realization of compact, room temperature, high finesse IR cavities suitable for laser stabilization. In this paper, we report on demonstration of quantum cascade lasers stabilized to high‐Q crystalline mid‐IR microcavities. The lasers operating at room temperature in the 4.3‐4.6 μm region have a linewidth approaching 10 kHz and are promising for on‐chip mid‐IR and IR spectrometers.

  相似文献   


18.
Following Mie theory, nanoparticles made of a high‐refractive‐index dielectric, such as silicon, exhibit a resonator‐like behavior and very rich resonance spectra. Which electric or magnetic particle mode is excited depends on the wavelength, the refractive‐index contrast relative to the environment, and the geometry of the nanoparticle itself. In addition, the spatial structure of the impinging light field plays a major role in the excitation of the nanoparticle resonances. Here, it is shown that, by tailoring the excitation field, individual multipole resonances can be selectively addressed while suppressing the excitation of other particle modes. This enables a detailed study of selected individual resonances without interference by the other modes.

  相似文献   


19.
We present a rare‐earth‐doped sapphire laser. Single‐crystalline α‐Al2O3 films doped with trivalent neodymium have been grown by pulsed laser deposition on undoped sapphire substrates. The Nd3+ doping concentrations of the films have been varied between 0.3 at.% and 2 at.%. Epitaxial growth was proven by structural and optical characterization of the films. The samples exhibit strongly polarization dependent emission transitions from the 4F3/2 manifold with a fluorescence lifetime of 108 μs and peak emission cross sections of 1.1 × 10−18 cm2 around 1100 nm. Lasing at 1096.5 nm was achieved under Ti:sapphire‐pumping in a planar waveguide configuration with a maximum cw output power of 137 mW and a slope efficiency of 7.5% with respect to the incident pump power.

  相似文献   


20.
The design of micro‐optical resonator arrays are introduced and tailored towards refractive index sensing applications, building on the previously unexplored benefits of open dielectric stacks. The resonant coupling of identical hollow cavities present strong and narrow spectral resonance bands beyond that available with a single Fabry Perot interferometer. Femtosecond laser irradiation with selective chemical etching is applied to precisely fabricate stacked and waveguide‐coupled open resonators into fused silica, taking advantage of small 12 nm rms surface roughness made available by the self‐alignment of nanograting planes. Refractive index sensing of methanol‐water solutions confirm a very attractive sensing resolution of 6.5 × 10−5 RIU. Such high finesse optical elements open a new realm of optofluidic sensing and integrated optical circuit concepts for detecting minute changes in sample properties against a control solution that may find importance in chemical and biological sensors, telecom sensing networks, biomedical probes, and low‐cost health care products.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号