首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Evaluation of soil fertility is required for the sustainable production in greenhouses; however, routine agrochemical analytical methods are not practical since most of them are too time consuming and costly. In this study, Fourier transform midinfrared photoacoustic spectroscopy (FTIR-PAS) was applied as an alternative technique in the fast characterization of greenhouse soils. Nine source clays and 235 soil samples were obtained from different greenhouses in China, and their counterpart open-field soils were also sampled for comparison. The FTIR-PAS spectra of soil clays and soils were recorded with the wave-number range of 600–4000 cm?1, and clear differences were observed among the spectra; soil organic matter (SOM) and soil clay played the main role in the spectral absorption. Partial least square regression (PLSR) models coupled to optimized spectral pretreatment were used to predict greenhouse soil properties, and FTIR-PAS spectra were closely related to SOM (R2 = 0.94) and soil total nitrogen (R2 = 0.90). For the other soil properties—such as pH, EC, water extractable P, K, Fe, and Cu—the calibration results were excellent or acceptable. These results suggested that FTIR-PAS could be used to determine most of greenhouse soil properties. Since the technique of FTIR-PAS is rapid and inexpensive, and it requires no sample pretreatment and little sample mass, it can be used in fast characterization of greenhouse soil and is a promising method for the management of greenhouse soil.  相似文献   

2.
Abstract

Partial least squares model is widely used in estimation of soil physical and chemical parameters such as soil organic matter and moisture content, due to its advantages in dealing with collinearity of variables like hyperspectral reflectance. However, it is hard to determine optimal combination of partial least squares model input for soil organic matter prediction since there are lots of possibilities such as, different mathematical transformation of spectral reflectance, wavelength ranges, and spectral resolution. Laboratory hyperspectral reflectance of soils in Songnen plain were analyzed in this study, and the orthogonal experimental design method for deriving optimal combination of input variables for soil organic matter prediction models was introduced. For intercalating orthogonal experimental design table, five different levels which commonly used by researchers were assigned to factors. Results show that the optimal combination input for single black soil is using the derivative logarithmic reciprocal reflectance in the wavelength range selected by multiple stepwise regression at a spectral resolution of 5?nm (R2=?0.95, RMSE?=?0.21, and RPD?=?4.49), and different soils is using continuum removed in the wavelength range selected by MSR at a spectral resolution of 5?nm (R2?=?0.77, RMSE?=?0.74, and RPD?=?2.08). With optimal combination input, the partial least squares model prediction ability was evaluated as excellent for single black soil, possible for different soils. This study illustrates the orthogonal experimental design method can be an effective way to identify the optimal input variables of a partial least squares model for soil organic matter prediction, and multiple stepwise regression can be a preprocessing step to reduce hyperspectral data redundancy before using partial least squares to predict soil organic matter. Overall, this study provides a new approach for determining optimal input of partial least squares predicting model.  相似文献   

3.
Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Mössbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite (γFe2O3) and superparamagnetic goethite (αFeOOH). Kaolinite (Al2Si2O5(OH)4), smectite, and minor portions of anatase (TiO2) were identified in the CBD-treated sample.  相似文献   

4.
Abstract

The effects of landuse, fertilizer history and soil type on the quantity and isotopic quality of hydrolysable soil amino acids were examined in 3 grassland and 2 arable soils. Results showed, (i) that overall concentrations of individual amino acids were highest in the grassland soils, (ii) that ‰δ15N values of the individual amino acids differed considerably between the five soils, and (iii) that the combination of amino acid ‰δ15N values and concentrations could be used to distinguish between landuse, crop type and fertilizer history. This preliminary study indicates that the pathways of transformation of soil amino acid N are influenced by long term N inputs and that associated biological processes are reflected in differences in concentrations and ‰δ15N values of individual soil amino acids.  相似文献   

5.
Abstract

One purpose of new land use concepts for degraded fens (organic soils with high N content) is the reduction of the mineralization process due to very high groundwater levels. However, knowledge of nitrogen mineralization process (net and gross) in degraded fen soils affected by reflooding is very small. Therefore, the objectives of our study were (a) to evaluate the suitability of 15N pool dilution method for measurements of gross mineralization rates in degraded fen soils and (b) to investigate how the reflooding of a degraded fen affects the net and gross nitrogen mineralization in a short-term incubation experiment. The usability of the 15N pool dilution method was diminished by the low recovery of the applied 15NH4 ? at time zero. The recovery of the added 15NH4 ? in the extractable soil NH4 ? pool was only 13.5% for the drained soil and 59.6% for the reflooded soil. However, the gross mineralization rates were similar for both soils and exceeded always the net rates substantially. The cumulative net mineralization rate was higher for the reflooded soil (1.58 μg N?cm?3?d?1) than for the drained soil (-0.67 μg N?cm?3?d?1). Differences between the two soils were also found in the nitrification intensity and the loss of 15N. This was probably one reason for the higher net mineralization rate in the reflooded soil.  相似文献   

6.
《Radiation measurements》2008,43(7):1285-1293
A main issue in soil erosion studies is to calibrate 137Cs data to provide satisfactory estimates of erosion and deposition rates. The cultivation on steep slopes in some areas of the South Central Pyrenees results in serious affections to soils due to water erosion that mobilizes soil particles down slope. In the region, the intensive soil use including deforestation, overgrazing and extensive agriculture during the last centuries together with some characteristics of the soils such as poor development, thin soil profiles and high stone contents make them prone to erosion. A model based on 137Cs profile is proposed to calculate erosion or sedimentation rates in these cultivated soils. The model uses parameters such as the volume of the fine fraction of the soils and the depth of cultivation calculated from the values obtained just from the soil sampling. Using a computer program the annual deposit of 137Cs is simulated for an erosion or deposition rate of soil. To test the model, 137Cs profiles of cultivated soils were collected at sampling sites located on temperate slopes in the Sierra de la Carrodilla (South Pyrenees) and experimental results were simulated with the model. The simulation results of the model were consistent with the experimental results of 137Cs concentrations and inventories. The model offers a potential to describe the soil redistribution in stony soils and estimates of erosion and deposition rates can be calculated easily for a range of the most common soils found in Mediterranean environments.  相似文献   

7.
Application of Infrared Photoacoustic Spectroscopy in Soil Analysis   总被引:1,自引:0,他引:1  
Abstract

Soil analysis has become routine work for soil management and crop production. However, laboratory analysis–based determination of soil properties is expensive and time consuming, which is not suitable for precision agriculture. Infrared spectroscopy (IR) appears as an alternative and fast technique to measure soil properties and has had wide application; in particular, a new method called infrared photoacoustic spectroscopy (FTIR-PAS) has been applied in soil analysis. The soil infrared photoacoustic spectrum is more convenient to record; the spectra contain more useful information versus conventional reflectance spectroscopy, and it appears promising for identification of soil types and measure soil properties. The step-scan function of FTIR-PAS makes it possible to explore the soil microstructure in situ; furthermore, more sensible photoacoustic cells (PA), such as a quartz-enhanced PA cell, will make FTIR-PAS a strong tool for the study of soil science. The application of infrared photoacoutic spectroscopy in soil analysis is largely dependent on spectra pretreatment and chemometrics methods due to strong interferences, and more mathematical tools models will benefit or optimize the prediction performance. To make full use of soil infrared spectra, soil spectra library construction is required in the future, which will play an important role in the application of soil analysis.  相似文献   

8.
The conversion of 2-chlorvinyldichloroarisine ClCH=CHAsCl2 (lewisite, I) in various soil samples is studied by IR spectroscopy. At the initial stage of the process, the rate and character of lewisite conversion are primarily determined by the presence of free surface hydroxyl groups in the sample (which manifest themselves as narrow intense absorption bands at 3700 and 3620 cm−1), being nearly independent of the content of physically adsorbed water (a wide band at 3430 cm−1). In sandy soils, which contain only a small concentration of hydroxyls, if any, lewisite experiences no noticeable decomposition, at least over a period of five days. By contrast, in clayey soils, possessing a high sorbability, the concentration of hydroxyls, highly reactive species, is large enough to completely hydrolyze lewisite into 2-chlorovinylarsonous acid ClCH=CHAs(OH)2 and then 2-chlorovinylarsineoxide ClCH=CHAsO within several hours.  相似文献   

9.
Abstract

An efficient soil analysis technique was developed to monitor soil fertility and perform precise soil management in tea plantations. In this study, near-infrared spectroscopy combined with chemometric methods was utilized to determine the organic matter and total nitrogen content and evaluate fertility of tea plantation soils. First, photometric precision and subtractive spectroscopy were used as indicators in identifying optimal sample preparation condition. Spectral reproducibility reached an optimum with powder particle size of 100 mesh (0.149?mm). Second, after comparing the combinations of the partial least squares method with three different characteristic wavelength extraction methods, the genetic algorithm and competitive adaptive reweighted sampling quantitative discrimination models were determined to be optimal for organic matter and total nitrogen contents, with prediction correlation coefficients of 0.9102 and 0.8763, respectively. Third, classification models for soil fertility level using linear discriminant analysis, support vector machine, and extreme learning machine were established based on a full spectrum and successive projections algorithm separately. The successive projections algorithm-extreme learning machine model was deemed superior with a correct classification rate of 84.38%. Our findings demonstrate that the proposed near-infrared spectroscopy calibration models successfully achieve the nondestructive and rapid evaluation of organic matter and total nitrogen contents, as well as the classification of soil fertility levels, in tea plantation soils. The results provide a basis for the development of internet-of-things sensors in the construction of a high-yield and high-quality tea plantation.  相似文献   

10.

Chemical dynamics is the study of the elementary processes and interactions in chemistry. Fundamental properties such as dipole moments, ionization energies, electron affinities, proton affinities, and electronic structure all contribute to the photochemistry, radiationless processes and reactivity underlying all physical processes. The making and breaking of chemical bonds, and the energy partitioning in chemical systems after transformation, are also in the domain of chemical dynamics.

The valence shell, the outermost shell of electrons in a system, contributes most to the physical properties of material. It is these electrons that are shared in covalent bonding, transferred in ionic systems, coupled to form bands in bulk material, and interact most strongly with the environment.  相似文献   

11.
Cryogenic vacuum extraction is the well-established method of extracting water from soil for isotopic analyses of waters moving through the soil–plant–atmosphere continuum. We investigate if soils can alter the isotopic composition of water through isotope memory effects, and determined which mechanisms are responsible for it. Soils with differing physicochemical properties were re-wetted with reference water and subsequently extracted by cryogenic water distillation. Results suggest some reference waters bind tightly to the soil and not all of this tightly bound water is removed during cryogenic vacuum extraction. Kinetic isotopic fractionation occurring when reference water binds to the soil is likely responsible for the 18O-depletion of re-extracted reference water, suggesting an enrichment of the tightly bound soil water pool. Further re-wetting of cryogenically extracted soils indicates an isotopic memory effect of tightly bound soil water on water added to the soil. The data suggest tightly bound soil water can influence the isotopic composition of mobile soil water. Findings show that soils influence the isotope composition of soil water by (i) kinetic fractionation when water is bound to the soil and (ii) equilibrium fractionation between different soil water pools. These findings could be relevant for plant water uptake investigations and complicate ecohydrological and paleohydrological studies.  相似文献   

12.

The use of stable isotopes of N and O in N2O has been proposed as a way to better constrain the global budget of atmospheric N2O and to better understand the relative contributions of the main microbial processes (nitrification and denitrification) responsible for N2O formation in soil. This study compared the isotopic composition of N2O emitted from soils under different tree species in the Brazilian Amazon. We also compared the effect of tree species with that of soil moisture, as we expected the latter to be the main factor regulating the proportion of nitrifier- and denitrifier-derived N2O and, consequently, isotopic signatures of N2O. Tree species significantly affected δ 15N in nitrous oxide. However, there was no evidence that the observed variation in δ 15N in N2O was determined by varying proportions of nitrifier- vs. denitrifier-derived N2O. We submit that the large variation in δ 15N-N2O is the result of competition between denitrifying and immobilizing microorganisms for NO 3 m . In addition to altering δ 15N-N2O, tree species affected net rates of N2O emission from soil in laboratory incubations. These results suggest that tree species contribute to the large isotopic variation in N2O observed in a range tropical forest soils. We found that soil water affects both 15N and 18O in N2O, with wetter soils leading to more depleted N2O in both 15N and 18O. This is likely caused by a shift in biological processes for 15N and possible direct exchange of 18O between H2O and N2O.  相似文献   

13.
我国几种地带性土壤中磷素形态的研究   总被引:1,自引:0,他引:1  
探明土壤磷素的存在形态,有助于揭示其在环境中的累积、迁移和转化过程及生物有效性。目前,在大尺度样带上开展土壤磷素形态空间变异规律的研究较少。本研究中,沿纬度方向采集了我国东部不同气候带分布的7种地带性林地土壤(包括寒温带的棕色针叶林土、中温带的暗棕壤、暖温带的棕壤、北亚热带的黄棕壤、中亚热带的黄壤、南亚热带的赤红壤和热带的砖红壤),将化学浸提法与溶液磷-31核磁共振(31P NMR)波谱法相结合,分析了土壤中磷素形态以及与其他土壤性质之间的关系,以期为阐明土壤磷素形态的空间变异性及其驱动因素提供基础资料。结果表明:供试土壤中,全磷、有效磷、无机磷和有机磷的含量范围分别为179.8~825.2,2.41~15.3,92.6~351.2和14.7~474.4 mg·kg-1,其中活性、中等活性、中等稳定性和高稳定性有机磷组分的含量范围分别为1.38~30.9,8.63~213.7,3.01~32.2和1.73~199.2 mg·kg-1。根据溶液31P NMR波谱,鉴定出供试土壤中含有无机形态的磷素即正磷酸盐和焦磷酸盐,同时也鉴定出了磷酸单酯、磷酸二酯和膦酸盐等有机形态磷素的存在,其中磷酸单酯中又鉴定出了新-肌醇六磷酸、D-手性-肌醇六磷酸、RNA单核苷酸、α-磷酸甘油、肌-肌醇六磷酸、β-磷酸甘油和鲨-肌醇六磷酸,磷酸二酯中又鉴定出了DNA的存在;所有土壤中均未检测出多聚磷酸盐的存在,除棕色针叶林土和暗棕壤外的其他土壤中未检测出膦酸盐的存在,而赤红壤中未检测出DNA的存在;无机形态的磷素以正磷酸盐为主,而有机形态的磷素则以磷酸单酯为主。总体来看,无论化学浸提法还是溶液31P NMR波谱法,从寒温带的棕色针叶林土到热带的砖红壤,全磷、有效磷、无机磷、有机磷及其组分的含量均呈现下降趋势。溶液31P NMR波谱与化学浸提法鉴定的磷素形态之间存在相关关系,其中正磷酸盐与活性有机磷的关系最为密切,磷酸单酯和膦酸盐与中等活性有机磷的关系最为密切,而焦磷酸盐和磷酸二酯与中等稳定性有机磷的关系最为密切。与化学浸提法相比,溶液31P NMR波谱法能从详细的分子水平上揭示土壤磷素形态的空间变异规律。  相似文献   

14.
Population pressure increasingly endangers high-mountain ecosystems such as the pastures in the Eastern Pamirs and the mountain forests on Mt. Kilimanjaro. At the same time, these ecosystems constitute the economic basis for millions of people living there. In our study, we, therefore, aimed at characterising the land-use effects on soil degradation and N-cycling by determining the natural abundance of 15N. A short review displays that δ15N of plant–soil systems may often serve as an integrated indicator of N-cycles with more positive δ15N values pointing towards N-losses. Results for the high-mountain pastures in the Eastern Pamirs show that intensively grazed pastures are significantly enriched in 15N compared to the less-exploited pastures by 3.5 ‰, on average. This can be attributed to soil organic matter degradation, volatile nitrogen losses, nitrogen leaching and a general opening of the N-cycle. Similarly, the intensively degraded savanna soils, the cultivated soils and the soils under disturbed forests on the foothill of Mt. Kilimanjaro reveal very positive δ15N values around 6.5 ‰. In contrast, the undisturbed forest soils in the montane zone are more depleted in 15N, indicating that here the N-cycle is relatively closed. However, significantly higher δ15N values characterise the upper montane forest zone at the transition to the subalpine zone. We suggest that this reflects N-losses by the recently monitored and climate change and antropogenically induced increasing fire frequency pushing the upper montane rainforest boundary rapidly downhill. Overall, we conclude that the analysis of the 15N natural abundance in high-mountain ecosystems is a purposeful tool for detecting land-use- or climate change-induced soil degradation and N-cycle opening.  相似文献   

15.

The commercially available solid state nuclear track detector CR-39 was bombarded with 100 MeV Si8+ ions. The Fourier transfonned infrared (FTIR) spectroscopic technique was employed for studying the changes in chemical properties whereas differential scanning calorimetry was used for studying the changes in thermal properties. It was observed that there were substantial chemical modifications in the sample, such as the breaking of C-0 single bonds and the formation of phenolic 0-H bonds. lt was further observed that CR-39 is amorphous and rigid and shows no glass transition temperature.  相似文献   

16.
Abstract

Acoustic wave devices such as thickness shear mode (TSM) resonators and shear horizontal surface acoustic wave (SH‐SAW) devices can be utilized for characterizing physical properties of liquids and for chemical sensor applications. Basic device configurations are reviewed and the relationships between experimental observables (frequency shifts and attenuation) and physical properties of liquids are presented. Examples of physical property (density and viscosity) determination and also of chemical sensing are presented for a variety of liquid phase applications. Applications of TSMs and polymer‐coated guided SH‐SAWs for chemical sensing and uncoated SH‐SAWs for “electronic tongue” applications are also discussed.  相似文献   

17.
Abstract

Changes in dimensions, mechanical properties and chemical composition due to irradiation by different particles at elevated temperatures are compared on the basis of atomic displacements derived from low temperature resistivity damage rates. The available data on void swelling, irradiation creep and room temperature hardening correlate reasonably well on this basis. The correlation seems poor for hardening at high temperatures and even worse for fracture properties and chemical effects (solute segregation, precipitate growth). The results are discussed in terms of the basic damage processes.  相似文献   

18.
Urban soils are potential reservoirs of toxic metals as a consequence of traffic emissions. Sources like brake linings, tyres, road pavement, exhaust fumes, guardrail, traffic signals and other galvanised steel structures are used in a large variety of external constructions in the modern urban areas. Their beneficial properties from a corrosion and oxidation perspective are well‐known but less is known about their contribution to the environmental fate of corrosion‐induced released zinc. In this work, the impact of guardrails and other traffic pollutants on urban soils has been studied by means of Raman spectroscopy (molecular speciation) and thermodynamic speciation to understand the mechanisms of metal release and uptake by the soils. Hydrozincite, Zn5(CO3)2(OH)6, was identified by means of Raman spectroscopy as the degradation compound of the galvanised zinc layer from guardrails which leads to the formation of soluble zinc, by acidic attack of the urban atmosphere, that drops and accumulate (zinc nitrate was identified) in soils. This fact shows the environmental risk of zinc release from the guardrails because zinc nitrate can be easily mobilised by water runoff, affecting the surrounding areas or groundwater. Other traffic pollutant that reaches guardrail and soil by atmospheric deposition, such as barium, was also identified in soil as well as in the guardrail in its carbonate form, BaCO3. Because of its low solubility, barium will accumulate in urban soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The content of such typical ecologically hazardous chemical elements as Pb, Ni, Cu, Sr, and Zn in soil and plant ash from the vicinity of an industrial center is measured. Since the main sources of these elements are smoke aerosols of industrial origin, the dependence of the concentrations of these elements on the distance from highly profuse, continually operating sources of emission is measured to a distance of ∼10 km. It is shown that the laws governing the variation of the concentration of different chemical elements in soil with the distance from the source of emission into the atmosphere are determined by the conditions of their gravity settling with consideration of the electrical interaction of the aerosol with the ground electric field and that the laws in plant ash are determined by the accumulation of highly dispersed, charged aerosol on the surface of plant leaves polarized in the ground electric field. Zh. Tekh. Fiz. 68, 20–24 (March 1998)  相似文献   

20.

More than 50% of engineered nanomaterials released into the environment contain silver nanoparticles (Ag-NPs). The mobility, bioavailability, and toxicity of engineered Ag-NPs are known to depend on their properties and the environmental conditions. However, almost nothing is known about the fate of naturally occurring Ag-NPs, which are formed during the reduction of Ag+ by natural organic matter, primarily humic substances (HSs). The aim of this work was to study the interaction of soils and plants with simulated natural Ag-NPs, i.e., Ag-NPs stabilized with HSs (Ag-HS-NPs). To reach this goal, Ag-HS-NPs were synthesized, and their sorption-desorption behavior on two contrasting soils (a mineral soil and one rich in organic matter) was evaluated, including alterations in the mineral composition of the soil solution. In parallel, the influence of Ag-HS-NPs on wheat seedling growth was estimated. Introduction of Ag-HS-NPs into the soils resulted in a 1.3- to 2-fold or greater increase in the concentration of many elements in the soil solution (Al, Cr, Cu, Fe, etc.), and this effect was more pronounced for the organic soil than for the mineral soil. To explain this effect, we hypothesized that this phenomenon was due to the partial dissolution of Ag-HS-NPs leading to the production of Ag+ that could be further reduced by soil organic matter, which was correspondingly oxidized. Therefore, the partial breaking of soil aggregates because of the decomposition of soil organic matter in the presence of Ag-HS-NPs could be expected. Plants treated with Ag-HS-NPs demonstrated a lower rate of water uptake, which decreased by over 81%. The shoot and root biomass decreased by 15–17% and by 13–15%, respectively. This study clearly demonstrates an underestimated hazard of Ag-NPs formed in nature in terms of their ability to adversely affect the environment.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号