首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selection of optimal combinations of inputs in a partial least squares model for prediction of soil organic matter
Authors:Ran Kang  Xiaokang Zhang  Huanjun Liu  Jiangui Liu  Xiang Wang
Institution:1. School of Space and Physics, Shandong University, Weihai, China;2. College of Resources and Environment Sciences, Northeast Agricultural University, Harbin, China;3. Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
Abstract:Abstract

Partial least squares model is widely used in estimation of soil physical and chemical parameters such as soil organic matter and moisture content, due to its advantages in dealing with collinearity of variables like hyperspectral reflectance. However, it is hard to determine optimal combination of partial least squares model input for soil organic matter prediction since there are lots of possibilities such as, different mathematical transformation of spectral reflectance, wavelength ranges, and spectral resolution. Laboratory hyperspectral reflectance of soils in Songnen plain were analyzed in this study, and the orthogonal experimental design method for deriving optimal combination of input variables for soil organic matter prediction models was introduced. For intercalating orthogonal experimental design table, five different levels which commonly used by researchers were assigned to factors. Results show that the optimal combination input for single black soil is using the derivative logarithmic reciprocal reflectance in the wavelength range selected by multiple stepwise regression at a spectral resolution of 5?nm (R2=?0.95, RMSE?=?0.21, and RPD?=?4.49), and different soils is using continuum removed in the wavelength range selected by MSR at a spectral resolution of 5?nm (R2?=?0.77, RMSE?=?0.74, and RPD?=?2.08). With optimal combination input, the partial least squares model prediction ability was evaluated as excellent for single black soil, possible for different soils. This study illustrates the orthogonal experimental design method can be an effective way to identify the optimal input variables of a partial least squares model for soil organic matter prediction, and multiple stepwise regression can be a preprocessing step to reduce hyperspectral data redundancy before using partial least squares to predict soil organic matter. Overall, this study provides a new approach for determining optimal input of partial least squares predicting model.
Keywords:soil organic matter  hyperspectral remote sensing  partial least squares
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号