首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
An amperometric sensor based on nano‐Au thin films was fabricated, by means of which a fast response to 4‐chlorophenol (4‐CP) can be achieved in the range of mM concentrations. The nanostructured Au thin film was prepared on glassy carbon electrodes by a template‐free, double‐potential step electrodeposition technique. Its structural feature can be controlled well by adjusting the deposition time. The amperometric detection of 4‐CP was performed at +0.85 V with a linear detection range from 0.2 to 4.8 mM and a detection limit of 0.11 mM (S/N=3). Besides, the effect of concentrations on the electrochemical behavior of 4‐CP on the Au thin film was investigated by linear sweep voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy.  相似文献   

2.
A gold (Au) nanoparticle-modified graphite pencil electrode was prepared by an electrodeposition procedure for the sensitive and rapid flow injection amperometric determination of hydrazine (N2H4). The electrodeposited Au nanoparticles on the pretreated graphite pencil electrode surface were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammograms showed that the Au nanoparticle-modified pretreated graphite pencil electrode exhibits excellent electrocatalytic activity toward oxidation of hydrazine because the highly irreversibly and broadly observed oxidation peak at +600?mV at the pretreated graphite pencil electrode shifted to ?167?mV at the Au nanoparticle pretreated graphite pencil electrode; in addition, a significant enhancement in the oxidation peak current was obtained. Thus, the flow-injection (FI) amperometric hydrazine sensor was constructed based on its electrocatalytic oxidation at the Au nanoparticle-modified pretreated graphite pencil electrode. The Au nanoparticle-modified pretreated graphite pencil electrode exhibits a linear calibration curve between the flow injection amperometric current and hydrazine concentration within the concentration range from 0.01 to 100?µM with a detection limit of 0.002?µM. The flow injection amperometric sensor has been successfully used for the determination of N2H4 in water samples with good accuracy and precision.  相似文献   

3.
Titanium dioxide nanoparticle/gold nanoparticle/carbon nanotube (TiO2/Au/CNT) nanocomposites were synthesized, and then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). A TiO2/Au/CNT nanocomposite-modified glassy carbon (GC) electrode was prepared using the drop coating method and was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric current–time response (I-T). The modified material is redox-active. The nonenzymatically detected amount of ascorbic acid (AA) on the TiO2/Au/CNT electrode showed a linear relationship with the AA concentration, for concentrations from 0.01 to 0.08 μM; the sensitivity was 117,776.36 μA?·?cm?2?·?(mM)?1, and the detection limit was 0.01 μM (S/N?=?3). The results indicated that the TiO2/Au/CNT nanocomposite-modified GC electrode exhibited high electrocatalytic activity toward AA. This paper describes materials consisting of a network of TiO2, Au, and MWCNTs, and the investigation of their synergistic effects in the detection of AA.  相似文献   

4.
A new glucose biosensor, based on the modification of highly ordered Au nanowire arrays (ANs) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. Morphologies of ANs and ANs/PtNPs were observed by scanning electron microscope. The electrochemical properties of ANs, ANs/GOx, ANs/PtNPs, and ANs/PtNPs/GOx electrodes were compared by cyclic voltammetry. Results obtained from comparison of the cyclic voltammograms show that PtNPs modification enhances electrochemical catalytic activity of ANs to H2O2. Hence, ANs/PtNPs/GOx biosensor exhibits much better sensing to glucose than ANs/GOx. Optimum deposition time of ANs/PtNPs/GOx biosensor for both amperometric and potentiometric detection of glucose was achieved to be 150 s at deposition current of 1?×?10?6 A. A sensitivity of 0.365 μA/mM with a linear range from 0.1 to 7 mM was achieved for amperometric detection; while for potentiometric detection the sensitivity is 33.4 mV/decade with a linear range from 0.1 to 7 mM.  相似文献   

5.
Horseradish peroxidase, previously modified with 1‐adamantane moieties, was supramolecularly immobilized on gold electrodes coated with perthiolated β‐cyclodextrin. The functionalized electrode was employed for the construction of an amperometric biosensor device for hydrogen peroxide using 1 mM hydroquinone as electrochemical mediator. The biosensor exhibited a fast amperometric response (6 s) and a good linear response toward H2O2 concentration between 12 μM and 450 μM. The biosensor showed a sensitivity of 1.02 mA/M cm2, and a very low detection limit of 5 μM. The electrode retained 97% of its initial electrocatalytic activity after 30 days of storage at 4 0C in 50 mM sodium phosphate buffer, pH 7.0.  相似文献   

6.
A new electrode has been developed and applied for amperometric detection in capillary electrophoresis (CE), comprised of carbon sol-gel composite material. The versatility of the sol-gel technique permits the flexible configuration of the electrode. The performance of such a sol-gel carbon composite electrode (CCE) is first evaluated in a typical CE application for the detection of purine-based compounds. Application of the CCE is also demonstrated for the detection of phenolic compounds in a micellar system. Separation resolution for non-ionic phenolic compounds can significantly be enhanced by introducing sodium dodecyl sulfate (SDS) at a concentration above its critical micelle concentration (cmc) to the buffer. Another design of the CCE incorporating the electrocatalyst Cu2O is employed for the analysis of sugars and organic acids based on dynamic modification with cetyltrimethylammonium bromide (CTAB). It has been found that the presence of surfactant in the separation buffer does not adversely influence the electrochemical detection using a sol-gel derived carbon electrode.  相似文献   

7.
A novel electrochemical DNA biosensor based on graphene-three dimensional nanostructure gold nanocomposite modified glassy carbon electrode (G-3D Au/GCE) was fabricated for detection of survivin gene which was correlated with osteosarcoma. The G-3D Au film was prepared with one-step electrochemical coreduction with graphite oxide and HAuCl4 at cathodic potentials. The active surface area of G-3D Au/GCE was 2.629 cm2, which was about 3.8 times compared to that of a Au-coated GCE under the same experimental conditions, and 8.8 times compared to a planar gold electrode with a similar geometric area. The resultant nanocomposites with high conductivity, electrocatalysis and biocompatibility were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A “sandwich-type” detection strategy was employed in this electrochemical DNA biosensor and the response of this DNA biosensor was measured by CV and amperometric current–time curve detection. Under optimum conditions, there was a good linear relationship between the current signal and the logarithmic function of complementary DNA concentration in a range of 50–5000 fM with a detection limit of 3.4 fM. This new biosensor exhibited a fast amperometric response, high sensitivity and selectivity and has been used in a polymerase chain reaction assay of real-life sample with a satisfactory result.  相似文献   

8.
A protein-based electrochemical sensor for hydrogen peroxide (H2O2) was developed by an easy and effective film fabrication method where spinach ferredoxin (Fdx) containing [2Fe–2S] metal center was cross linked with 11-mercaptoundecanoic acid (MUA) on a gold (Au) surface. The surface morphology of Fdx molecules on Au electrodes was investigated by atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to study the electrochemical behavior of adsorbed Fdx on Au. The interfacial properties of the modified electrode were evaluated in the presence of Fe(CN)63?/4? redox couple as a probe. From CV, a pair of well-defined and quasi-reversible redox peaks of Fdx was obtained in 10 mM, pH 7.0 Tris–HCl buffer solution at ?170 and ?120 mV respectively. One electron reduction of the [2Fe-2S]2+ cluster occurs at one of the iron atoms to give the reduced [2Fe-2S]+. The formal reduction potential of Fdx ca. ?150 mV (vs. Ag/AgCl electrode) at pH 7.0. The electron-transfer rate constant, ks, for electron transfer between the Au electrode and Fdx was estimated to be 0.12 s?1. From the electrochemical experiments, it is observed that Fdx/MUA/Au promoted direct electron transfer between Fdx and electrode and it catalyzes the reduction of H2O2. The Fdx/MUA/Au electrode displays a linear increase in amperometric current for increasing concentration of H2O2.The sensor calibration plot was linear with r2 = 0.998 with sensitivity approximately 68.24 μAm M?1 cm?2. Further, the effect of nitrite on the developed sensor was examined which does not interfere with the detection of H2O2. Finally, the addition of H2O2 on MUA/Au electrode was observed which has no effect on amperometric current.  相似文献   

9.
A new method, pressurized CEC with end‐column amperometric detection using carbon paste electrode, has been developed for the separation and determination of five phenolic xenoestrogens in chicken eggs and milk powder samples. Efficient separation of five analytes was performed by pressurized CEC using a mobile phase consisting of 60% v/v ACN and 40% v/v Tris buffer (5 mmol/L, pH 8.0), +6 kV of applied voltage and 7.0 MPa of supplementary pressure. Detection limits of 50, 5, 2, 10 and 20 ng/mL for pentachlorophenol, bisphenol‐A, 2,4‐dichlorophenol, 4‐tert‐octylphenol and 4‐nonylphenol, respectively, were achieved using carbon paste electrode as working electrode and +0.8 V as detection potential. Matrix solid phase dispersion extraction method had been employed during sample preparation procedure, and mean recoveries ranged from 79.2 to 102.6% at different concentrations of phenolic xenoestrogens for spiked egg and milk powder samples were obtained.  相似文献   

10.
A novel electrochemical sensor for para-nitrophenol (p-NP) was constructed with graphene–Au composite containing 10 % Au (G–Au 10 %). In the composite, Au nanoparticles with the size of ca. 11 nm were regularly scattered on graphene sheet without aggregation, which offers dramatically higher electrocatalytic activity on the redox of K3[Fe(CN)6]/K4[Fe(CN)6] couple than sole Au nanoparticles. Compared to sole Au nanoparticles, the G–Au 10 % also exhibited dramatically improved electrocatalytic activity on the reduction of p-NP. Amperometric detection of p-NP at G–Au 10 % modified electrode displayed a wide linear range of 0.47–10.75 mM with detection limit of 0.47 μM and a high sensitivity of 52.85 μA/mM. Considering the thrifty in utilization of noble Au, the G–Au 10 % can be successfully applied as a low-cost and powerful sensing material for trace detection of p-NP.  相似文献   

11.
Magnetic Fe3O4 nanoparticles functionalized multiwalled carbon nanotubes (nano‐Fe3O4 MWNTs) were prepared for electrochemical sensors. 2‐amino‐5‐mercapto‐1,3,4‐thiadiazole was used as a connecter to form a network that connected nano‐Fe3O4 MWNTs to the Au electrode surface. Modified process of the electrode was studied with SEM, TEM and cyclic voltammetry. Cyclic voltammetry and amperometric i‐t curve were used to investigate characteristics of the obtained electrode. The sensor has been successfully used on the direct detection of catechol and showed excellent performances. The linear regression equation was Ipa(μA)=0.07763+0.16739 C (μmol/L); R=0.9993 and the detection limit was 5.38×10?8 mol/L. The modified electrode showed good reproducibility and stability.  相似文献   

12.
The coulometric efficiency (Ceff) of an amperometric detector integrated on PDMS/glass capillary electrophoresis microfluidic device (microchip) has been enhanced by in-channel electrochemical modification. In-channel electrochemical deposition of gold particles was performed in order to vertically increase the surface area of the Au sensing microelectrode. The roughness of the electrodes was characterized using scanning electron microscopy and profilometric analysis. The degree of electrode modification was also characterized by roughness factor determination. Separation processes including detection potential was optimized and the analytical performance of the microchip was tested using a mixture of dopamine (DA) and catechol (CA). The modified electrochemical detector provided well-resolved separation of DA and CA in less than 60 s with enhanced sensitivity; no peak broadening was observed. The limit of detection using in-channel modification of working electrode for DA and CA are 60 and 110 nM, respectively. Thus, in-channel electrochemical deposition of metallic particles should be used to enhance the Ceff of integrated amperometric detection of analytes with good redox properties in order to obtain lower LODs.  相似文献   

13.
The simple, fast and highly sensitive anodic stripping voltammetric detection of As(III) at a gold (Au) nanoparticle‐modified glassy carbon (GC) (nano‐Au/GC) electrode in HCl solution was extensively studied. The Au nanoparticles were electrodeposited onto GC electrode using chronocoulometric technique via a potential step from 1.1 to 0 V vs. Ag|AgCl|NaCl (sat.) in 0.5 M H2SO4 containing Na[AuCl4] in the presence of KI, KBr, Na2S and cysteine additives. Surfaces of the resulting nano‐Au/GC electrodes were characterized with cyclic voltammetry. The performances of the nano‐Au/GC electrodes, which were prepared using different concentrations of Na[AuCl4] (0.05–0.5 mM) and KI additive (0.01–1.0 mM) at various deposition times (10–30 s), for the voltammetric detection of As(III) were examined. After the optimization, a high sensitivity of 0.32 mA cm?2 μM?1 and detection limit of 0.024 μM (1.8 ppb) were obtained using linear sweep voltammetry.  相似文献   

14.
In this study, Prussian blue (PB) film on the electroreduced graphene oxide (ERGO)‐modified Au electrode surface (ERGO/PB) is easily prepared by means of cyclic voltammetric technique in the mixture of K3Fe(CN)6 and FeCl3. Its electrochemical behaviors for NADH biosensor are studied. The structural and morphological characters of modified electrode material are analyzed with using of XPS, XRD, Raman, EDS, and SEM techniques. ERGO/PB hybrid nanocomposite for NADH biosensor is exhibited to the higher catalytic effect (linear range from 1.0 to 100 μM, detection limit of 0.23 μM at S/N=3) compared to naked Au, ERGO‐modified Au, and PB‐modified Au electrodes. In addition to, ERGO/PB electrode was used to voltammetric and amperometric detection of H2O2. ERGO/PB electrodes also showed the same behavior as the NADH sensor. This ERGO/PB‐modified electrode supplied a simple, new, and low‐cost route for amperometric sensing of both NADH and H2O2.  相似文献   

15.
An isocratic chromatographic separation with amperometric detection of underivatized amino acids at a copper oxyhydroxide modified glassy carbon electrode is described. A simple and sensitive quantitation procedure of amino acids without the need of tedious and time-consuming derivatization step was achieved by coupling anion-exchange chromatography with electrochemical detection. The effects of hydroxide, nitrate and acetonitrile concentration in the mobile phase on the capacity factors and peak resolution was evaluated. Under the optimized isocratic chromatographic conditions (i.e. 60 mM NaOH) and under constant applied potentials (i.e. 0.55 V versus Ag/AgCl) the detection limit ranged between 4 and 24 pmol injected and the linear dynamic range spanned generally over three or four order of magnitude for all investigated amino acid compounds. Direct determination of several common free amino acids in beer and milk samples were performed.  相似文献   

16.
A sensitive and selective amperometric method for maltol is reported based on a nanostructural Co3O4-assembled Mobil composite material (MCM-41). The amperometric sensor was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, cyclic voltammetry, electrochemical impedance spectroscopy, and ultraviolet–visible absorption spectroscopy. The obtained calibration curve showed that the oxidative peaks increased linearly with the maltol concentration from 1.66?×?10?6?M to 1.15?×?10?4?M with a detection limit of 0.42?µM. Furthermore, the mechanism of oxidation of the analyte on the modified electrode surface was investigated using electrochemical techniques. The modified electrode was used for the determination of maltol using the method of standard addition with satisfactory results.  相似文献   

17.
A simple, fast and sensitive HPLC method with electrochemical detection employing boron-doped diamond electrode (BDD) for the determination of sildenafil (Viagra™), vardenafil (Levitra™) and their main metabolites, N-desmethyl sildenafil and N-desethyl vardenafil in human plasma is presented. The assay involved drug extraction by tert-butyl methyl ether and isocratic reversed-phase liquid chromatography with amperometric detection. Complete separation of all analytes was achieved within 12 min. The mobile phase consisted of 20 mM sodium dihydrogen phosphate with 40 mM sodium perchlorate/acetonitrile (70:30, v/v), pH 3.5. The electrode working potential was +1520 mV (vs. Pd/H2). Calibration curves were linear over the concentration range of 10–400 ng mL−1. Phloretin was used as an internal standard. The limits of detection (LOD) and quantification (LOQ) for the studied analytes were within the range of 2–4 ng mL−1 and 7.0–13.4 ng mL−1, respectively. The developed method was applied to human plasma samples spiked with analytes at therapeutic concentrations. The study confirms the method's suitability for both pharmacokinetic studies and therapeutic monitoring.  相似文献   

18.
Au/TiO2 nanorod composites with different ratios of [TiO2]:[Au] have been prepared by chemically reducing AuCl4 on the positively charged TiO2 nanorods surface and used to modify boron‐doped diamond (BDD) electrodes. The electrochemical behaviors of catechol on the bare and different Au/TiO2 nanorod composites‐modified BDD electrodes are studied. The cyclic voltammetric results indicate that these different Au/TiO2 nanorod composites‐modified BDD electrodes can enhance the electrocatalytic activity toward catechol detection, as compared with the bare BDD electrode. Among these different conditions, the Au/TiO2‐BDD3 electrode (the ratio of [TiO2]:[Au] is 27:1) is the most choice for catechol detection. The electrochemical response dependences of the Au/TiO2‐BDD3 electrode on pH of solution and the applied potential are studied. The detection limit of catechol is found to be about 1.4 × 10‐6 M in a linear range from 5 × 10‐6 M to 200 × 10‐6 M on the Au/TiO2‐BDD3 electrode.  相似文献   

19.
《Analytical letters》2012,45(3):483-494
Abstract

A new biosensor for the amperometric detection of hydrogen peroxide was developed by means of immobilized horseradish peroxidase (HRP) on a platinum disk based on gold nanoparticles, nafion, polythionine (PTn), and gelatin as matrixes. The mediator (PTn) was embedded in nafion film effectively without leaching even after long periods of operation, the immobilization of the enzyme comes from the cooperative binding by the Au nanoparticles and gelatin. The fabrication procedure of the biosensor was characterized by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical characteristics of the enzyme electrode with respect to the effect of pH, temperature, and the operational and storage stabilities were studied. The test demonstrated that the biosensors show high stability, fast response (<20 s), and a working range 0.05 to 30.6 mM (correlation coefficient: 0.9986), a detection limit of 0.02 mM to hydrogen peroxide (H2O2). The analytical results by this approach were in satisfactory agreement with those by conventional methods of titration.  相似文献   

20.
Polythymine oligonucleotide (PTO)‐modified gold electrode (PTO/Au) was developed for selective and sensitive Hg2+ detection in aqueous solutions. This modified electrode was prepared by self‐assembly of thiolated polythymine oligonucleotide (5′‐SH‐T15‐3′) on the gold electrode via Au? S bonds, and then the surface was passivated with 1‐mercaptohexanol solution. The proposed electrode utilizes the specific binding interactions between Hg2+ and thymine to selectively capture Hg2+, thereby reducing the interference from coexistent ions. After exchanging the medium, electrochemical reduction at ?0.2 V for 60 s, voltammetric determination was performed by differential pulse voltammetry using 10 mM HEPES; pH 7.2, 1 M NaClO4 as supporting electrolyte. This electrode showed increasing voltammetric response in the range of 0.21 nM Hg2+, with a relative standard deviation of 5.32% and a practical detection limit of 60 pM. Compared with the conventional stripping approach, the modified electrode exhibits good sensitivity and selectivity, and is expected to be a new type of green electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号