首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Monodispersed, nano silica particles have been prepared by sol-gel hydrolysis and condensation of the metal alkoxide using pH buffer. The prepared particles are characterised by XRD, FTIR, BET, SEM, TEM measurements. The measurements reveal that the size and shape of silica particles depend on concentration of water. In addition, the ultrasonic longitudinal velocity and attenuation of the nano silica particles have been measured at a frequency of 5?MHz over a wide range of temperatures from 300?K to 1150?K in nano silica. The different structural transitions, such as monoclinic, orthorhombic, orthorhombic with a non-integral super lattice, stable orthorhombic and hexagonal, which exist in silica are explained based on on-line high-temperature ultrasonic velocity and attenuation measurements.  相似文献   

2.
Superparamagnetic iron oxide nanoparticles were synthesized by coprecipitation of iron chloride salts at various pH values (9, 10, 11 and12) that were adjusted using an ammonia solution. Increasing the pH from 9 to 12 led to decreases in the size of iron oxide nanoparticles from 7.9±1.4 to 5±0.6 nm and the saturation magnetization (Ms) from 82.73 to 67.14 emu/g, respectively, when analyzed with transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). X-ray diffraction patterns as well as Ms values showed that magnetite is the dominantly synthesized phase in the examined pH values. Unmodified iron oxide nanoparticles were coated with silica via the hydrolysis and condensation of tetraethyl orthosilicate (TEOS), designated P1 particles. The size distribution diagram of P1 particles showed two regions with mean sizes of 143.3±15.4 and 216.9±13.7 nm corresponding to silica and iron oxide@silica particles, respectively. Stabilization of iron oxide nanoparticles using sodium citrate prior to coating with silica (P2 particles) resulted in nanocomposites with a mean size of 275±16.1 nm and an Ms value of 2.9 emu/g. Subsequently, the surface of P2 particles was functionalized by amine groups using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (EDS). Results obtained from the measurement of zeta potential revealed that the highest value of isoelectric point (PI) change, indicating a more efficient surface functionalization, occurs when the EDS concentration of 90 mM is used, as compared to that for particles aminated using 25 and 180 mM EDS.  相似文献   

3.
A method for the introduction of amine groups onto the surface of magnetite and silica-coated magnetite nanoparticles has been established based on the condensation of aminopropyltriethoxysilane. Amine-modified particles were grafted with an oligonucleotide and used in the capture of a complimentary sequence. The particles’ efficiency at capture was observed to correlate directly with amine group surface density.  相似文献   

4.
Magnetic nanoparticles coated with silica have been subjected of extensive, and, in many aspects, also intensive investigations because of their potential application in different technological fields, particularly in biomedicine. This work was conceived and is being carried out in two main parts: (1) synthesis of the ferrimagnetic nanoparticles, specifically magnetite, and (2) coating these particles with tetraethyl orthosilicate (TEOS). The nanosized magnetite sample was prepared by the reduction–precipitation and the nanomagnetite particles were coated by the sol-gel method, based on the hydrolysis of tetraethyl orthosilicate (TEOS). The so obtained materials were characterized with powder X-ray diffraction (XRD), FTIR spectroscopy, saturation magnetization measurements, and 57Fe Mössbauer spectroscopy at room temperature.  相似文献   

5.
Superparamagnetic silica-coated magnetite (Fe3O4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Then silica was coated on the Fe3O4 nanoparticles using a sol–gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu2+, the magnetic silica nanoparticles with immobilized Cu2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.  相似文献   

6.
Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.  相似文献   

7.
A method to prepare a core–shell structure consisting of a Pt metal core coated with a silica shell (Pt(in)SiO2) is described herein. A silica shell was grown on poly(vinylpyrrolidone) (PVP)-stabilized Pt nanoparticles 2–3 nm in size through hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) in a water/ethanol mixture with ammonia as a catalyst. This process requires precise control of the reaction conditions to avoid the formation of silica particles containing multiple Pt cores and core-free silica. The length of PVP molecules, water content, concentration of ammonia and Pt nanoparticles in solution were found to significantly influence the core–shell structure. By optimizing these parameters, it was possible to prepare core–shell particles each containing a single Pt nanoparticle with a silica layer coating approximately 10 nm thick.  相似文献   

8.
Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.  相似文献   

9.
Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.  相似文献   

10.
Ahn  K.H.  Jung  C.H.  Choi  M.  Lee  J.S. 《Journal of nanoparticle research》2001,3(2-3):161-170
Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H2/O2/Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution.  相似文献   

11.
Fe3O4 magnetic nanoparticles (MNPs) were synthesized by the co-precipitation of Fe3+ and Fe2+ with ammonium hydroxide. The sodium citrate-modified Fe3O4 MNPs were prepared under Ar protection and were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). To improve the oxidation resistance of Fe3O4 MNPs, a silica layer was coated onto the modified and unmodified MNPs by the hydrolysis of tetraethoxysilane (TEOS) at 50 °C and pH 9. Afterwards, the silica-coated Fe3O4 core/shell MNPs were modified by oleic acid (OA) and were tested by IR and VSM. IR results revealed that the OA was successfully grafted onto the silica shell. The Fe3O4/SiO2 core/shell MNPs modified by OA were used to prepare water-based ferrofluids (FFs) using PEG as the second layer of surfactants. The properties of FFs were characterized using a UV-vis spectrophotometer, a Gouy magnetic balance, a laser particle size analyzer and a Brookfield LVDV-III+ rheometer.  相似文献   

12.
In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images. Silica coated ZnO nanoparticles demonstrated a significant inhibition of photocatalytic activity against photodegradation of methylene blue dye in aqueous solution. The effects of silica coating on the UV blocking property of ZnO nanoparticles were also studied.  相似文献   

13.
The magnetite nanoparticles were synthesized in an ethanol–water solution under ultrasonic irradiation from a Fe(OH)2 precipitate. XRD, TEM, TG, IR, VSM and UV/vis absorption spectrum were used to characterize the magnetite nanoparticles. It was found that the formation of magnetite was accelerated in ethanol–water solution in the presence of ultrasonic irradiation, whereas, it was limited in ethanol–water solution under mechanical stirring. The monodispersibility of magnetite particles was improved significantly through the sonochemical synthesis in ethanol–water solution. The magnetic properties were improved for the samples synthesized under ultrasonic irradiation. This would be attributed to high Fe2+ concentration in the magnetite cubic structure.  相似文献   

14.
The influence of the length of the cation alkyl chain on the dispersibility by ultrasonic treatment of TiO2 nanopowders in hydrophilic imidazolium-based room temperature ionic liquids was studied for the first time by dynamic light scattering and advanced rheology. TiO2 nanopowders had been synthesized by chemical vapor synthesis (CVS) under varied conditions leading to two different materials. A commercial nanopowder had been used for comparison. Characterizations had been done using transmission electron microscopy, X-ray diffraction, nitrogen adsorption with BET analysis, and FT-IR spectroscopy. Primary particle sizes were about 6 and 8 nm for the CVS-based and 26 nm for the commercial materials. The particle size distribution in the dispersion was strongly influenced by the length of the cation alkyl chain for all the investigated powders with different structural characteristics and concentrations in the dispersion. It was found that an increase of the alkyl chain length was beneficial, leading to a narrowing of the particle size distribution and a decrease of the agglomerate size in dispersion. The smallest average nanoparticle sizes in dispersion were around 30 nm. Additionally, the surface functionality of the nanoparticles, the concentration of the solid material in the liquid, and the period of ultrasonic treatment control the dispersion quality, especially in the case of the ionic liquids with the shorter alkyl chain. The influence of the nanopowders characteristics on their dispersibility decreases considerably with increasing cation alkyl chain length. The results indicate that ionic liquids with adapted structure are candidates as absorber media for nanoparticles synthesized in gas phase processes to obtain liquid dispersions directly without redispergation.  相似文献   

15.
Silica xerogels were prepared by the sol-gel method under ultrasonic irradiation, using tetraethylorthosilicate (TEOS) as the starting material. Hexamethyldisiloxane (HMDSO) was used as the hydrophobizing agent. When preparing silica xerogel, it is necessary to perform aging and hydrophobization to suppress shrinkage during ambient pressure drying, however, such treatments are time-consuming. In this study, the semi-solid hydrogel was irradiated with ultrasonic for the first time in order to accelerate aging and hydrophobic treatment, and the effect of ultrasonic frequency on structure was investigated. Firstly, ultrasonic irradiation was performed at frequencies of 100 kHz and 500 kHz, followed by hydrophobic treatment at a frequency of 500 kHz, in order to promote aging. The results identify optimum conditions for ultrasonic irradiation to promote aging and hydrophobization reactions, and it was found to be possible to prepare silica xerogels in less than 1/5 of the conventional time. The silica xerogels had a low density and the shrinkage was suppressed. In this study, it was found that ultrasonic irradiation of semi-solid hydrogel was very effective for promoting the reaction.  相似文献   

16.
Abstract Nearly monodispersed particles of silica were prepared and coated with uniform layers of titanium dioxide in anatase phase by hydrolysis and condensation of titanium butoxide. The coating thickness could be altered by adjusting the concentration of reactants (titanium butoxide and water) and the amount of added silica particles. Different coating thicknesses were deposited and studied using optical absorption spectroscopy, electron microscopy and Fourier transform infra-red spectroscopy. It was found that silica particles of size 170 ±5 nm were coated with 23±5 nm thick layer of titanium dioxide. Alternatively titania particles of size 340±5 nm were synthesized by controlled hydrolysis of titanium ethoxide in the presence of sodium chloride. These particles were further coated with 135±5 nm thick layer of silica to investigate changes in properties after changing the shell material  相似文献   

17.
A super-hydrophobic and super-oleophilic silica film on stainless steel mesh was obtained by simple sol-gel method using tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) as precursors. The super-hydrophobic and super-oleophilic properties were achieved owing to the hierarchical structure of the silica film with methyl groups terminated domains constructed on the mesh. The effects of the particle size, molar ration of MTES/TEOS, molar concentration of TEOS and aging of the silica sol on the hydrophobicity of the silica film were discussed. With increasing the dimensional size of silica particle, molar ration of MTES/TEOS, molar concentration of TEOS and aging period, the hydrophobicity of the silica film can be enhanced due to the increase of the surface roughness or coverage of the methyl groups. Besides, diiodomethane droplet can spread out on the silica film within 6.71 s for the capillary force and intrinsic oleophilicity of the methyl groups.  相似文献   

18.
In jet agglomeration plants, powders are agglomerated to obtain good instant properties. The free-falling initial material is wetted in a spray cone by droplets or in a steam jet by condensation at the particle surface. In a subsequent region of high particle concentration, collision between particles occurs and agglomerates form, if the forces of adhesion are strong enough. A commercial measurement device, working according to the principle of Fraunhofer diffraction, was modified for in-line application. It was used to measure particle size distributions and concentrations of solid particles and droplets in jets. A model is presented to calculate local particle sizes by means of mass balances from integral measurements over large volumes. The results of in-line particle size and agglomerate size analyses show the practical importance of dry agglomeration during transport and lead to a better understanding of the subsequent wet agglomeration process.  相似文献   

19.
Core–shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug “Methylene blue” (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core–shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.  相似文献   

20.
该工作探讨利用TEOS前驱液及不同含量、不同分子量PEG制备出SiO2粉末的性质.SiO2粉末由溶胶-凝胶法制备,并结合退火前后烘干.TEOS前驱溶液的水解及缩合反应速率在pH=3时比在pH=5,7,9时进行得更彻底,且随温度及PEG分子量的升高而升高;粉末产率在TEOS前驱液pH=3时达到最大.与不加PEG的溶胶-凝胶法制备出的样品相比,加入PEG制备的粉末有更高的吸水能力.若粉末从高至500℃退火,则可发现乙醇浓度增加.依据液体和固体NMR、电子显微镜以及BET结果,对吸水及粉末表面积之间的关系进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号