首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
PBT/organic montmorillonite (MMT) nanocomposites were prepared via melt intercalation and their nanostructure was characterized by means of X‐ray diffraction and transmission electron microscopy. Nanocomposite formation requires sufficiently hydrophobic organically modified layered silicates, as well as the presence of polar interactions between silicate and polymer. Three different alkylammonium surfactants were used to modify MMT. In addition, epoxy resin was added as a third component, and the effects on the intercalation and exfoliation behavior of the PBT nanocomposites were investigated.  相似文献   

2.
Poly(propylene)/clay nanocomposites were prepared by melt intercalation, using pristine montmorillonite (MMT), hexadecyl trimethyl ammonium bromide (C16), poly(propylene) (PP) and maleic acid (MA) modified PP (MAPP), The nanocomposites structure is demonstrated using X‐ray diffraction (XRD) and high resolution electronic microscopy (HREM). Our purpose is to provide a general concept for manufacturing polymer nanocomposites by melt intercalation starting from the pristine MMT. We found different kneaders (twin‐screw extruder or twin‐roll mill) have influence on the morphology of the PP/clay nanocomposites. Thermogravimetric analysis (TGA) shows that the thermal stability of PP/clay nanocomposites has been improved compared with that of pure PP. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A long-chain surfactant, enzoylbenzyl-N,N-dimethyl-N-octadecylammonium bromide (BDOB) with a benzophenone group, was synthesized to modify the montmorillonites (MMT) for the preparation of nanocomposites via photo-induced polymerization. The BDOB-modified MMT was characterized by the fourier transform infrared spectrometer (FTIR), thermal gravimetric analyzer (TGA) and X-ray diffraction (XRD), and the results of XRD indicated that the intercalated structures of BDOB-modified MMT was obtained. The conversion of the bisphenol A epoxy diacrylate (EA) was quantified by the FTIR, and the results indicated that conversion increased with an increase in the amount of BDOB-modified MMT. The morphologies of the UV-cured EA/MMT nanocomposites prepared from this organically modified MMT were studied by means of XRD and TEM, and the results showed that all the samples contained an intercalated structure with partial exfoliated structure. The results of TGA and mechanical properties also indicated that the thermal and mechanical properties of UV-cured nanocomposites were significantly enhanced due to the presence of the long chain surfactant organically modified MMT.  相似文献   

4.
Poly(vinylidene fluoride) (PVDF)/montmorillonite (MMT) nanocomposites were prepared by melt blen- ding a kind of organically modified montmorillonite with PVDF. The morphological structures of the nanocomposites were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The re- sults indicate that organically modified montmorillonites are in the form of intercalation, exfoliation, and fragments in the PVDF matrix. For the composites, the (001) peak position of MMT was found to shift to a lower angle in XRD patterns, and some MMT fragments could be observed under TEM. MMT loading was favorable to producing the piezoelectric β phase in the PVDF matrix and caused internal stress in α crystals. At the same time, the crystallinity and spherulite size of PVDF decreased with the MMT content. MMT induced β phase is stable even at high temperatures (160℃). For these changes in morphological structures, some possible explanations were proposed based on the experimental re- sults.  相似文献   

5.
The procedure for the fabrication of epoxy-based polymer layered silicate nanocomposites is important in respect of the nanostructure that is developed. To further our understanding of this, the influence of an organically modified clay (montmorillonite, MMT) on the curing kinetics of an epoxy resin has been studied by differential scanning calorimetry. Clay loadings of 10 and 20 mass% are used, and isothermal as well as dynamic cures have been investigated. For both cure schedules the effect of the MMT is to advance the reaction. Kinetic analysis yields values for the activation energy, but shows that the reaction cannot be described simply by the usual autocatalytic equation. The glass transition of the cured nanocomposites is lower than that for the cured neat resin, a result that is attributed to homopolymerisation taking place in addition to the epoxy–amine reaction.  相似文献   

6.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with organically modified montmorillonite (MMT). The organic MMT layers were exfoliated in a nylon‐66 matrix as confirmed by wide‐angle X‐ray diffraction (WAXD) and transmission electron microscopy. The presence of MMT layers increased the crystallization temperature of nylon‐66 because of the heterogeneous nucleation of MMT. Multiple melting behavior was observed in the nylon‐66/MMT nanocomposites, and the MMT layers induced the formation of form II spherulites of nylon‐66. The crystallite sizes L100 and L010 of nylon‐66, determined by WAXD, decreased with an increasing MMT content. High‐temperature WAXD was performed to determine the Brill transition in the nylon‐66/MMT nanocomposites. Polarized optical microscopy demonstrated that the dimension of nylon‐66 spherulites decreased because of the effect of the MMT layers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2861–2869, 2003  相似文献   

7.
A series of epoxy resin nanocomposites modified by polyurethane and organically modified montmorillonite was prepared by effectively dispersing the organically modified montmorillonite in interpenetrating polymer networks (IPNs) of epoxy and polyurethane via the sequential polymeric technique and in situ polymerization. The tribological performance of the resultant EP/PU nanocomposites was investigated by a pin‐on‐disc tester, and the results showed that adding polyurethane and organically modified clay to the EP matrix had a synergistic effect on improving tribological performance of EP/PU nanocomposites. The morphologies of the worn surface were studied by scanning electron microscopy (SEM) observations, and the results indicated that the mechanism of improving tribological performance of EP/PU nanocomposites was different from that of pure EP or pure EP/PU IPNs. The thermal behavior of these nanocomposites was also investigated by thermogravimeric analysis (TGA), and the results indicated that adding organically modified clay to the matrix remedied the deterioration of the thermal degradation temperature of the interpenetrating networks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   

9.
采用水热方法,在493 K条件下反应72小时,合成了氟基蒙脱土(F-MMT),在这种F-MMT中,硅酸盐结构中的一些OH-被F-取代。采用溶液插层方法,制备了聚乙烯醇/F-MMT纳米复合材料(PVA/F-MMT)。采用X 射线衍射、扫描电镜和透射电镜对F-MMT 和 PVA/F-MMT纳米复合材料进行了表征;结果表明,片状结构的F-MMT均匀分散于PVA中,形成了层离结构的纳米复合材料。热重分析、力学性能和紫外可见光谱的测试结果表明,在没有牺牲光学性能情况下,PVA/F-MMT纳米复合材料的热稳定性和力学性能都得到了提高。力学和热学性能的提高归功于F-MMT均匀而好的分散于聚合物基体中,以及PVA中的 OH- 和F-MMT 中F-之间强的氢键作用。  相似文献   

10.
In this study, the biodegradable poly(lactic acid) (PLA)/montmorillonite (MMT) nanocomposites were successfully prepared by the solution mixing process of PLA polymer with organically-modified montmorillonite (m-MMT), which was first treated by n-hexadecyl trimethyl-ammonium bromide (CTAB) cations and then modified by biocompatible/biodegradable chitosan to improve the chemical similarity between the PLA and m-MMT. Both X-ray diffraction data and transmission electron microscopy images of PLA/m-MMT nanocomposites indicate that most of the swellable silicate layers were disorderedly intercalated into the PLA matrix. Mechanical properties and thermal stability of the PLA/m-MMT nanocomposites performed by dynamic mechanical analysis and thermogravimetric analysis have significant improvements in the storage modulus and 50% loss in temperature when compared to that of neat PLA matrix. The degradation rates of PLA/m-MMT nanocomposites are also discussed in this study.  相似文献   

11.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by three different intercalating agents: methacrylatoethyl trimethyl ammonium chloride (DMC), dodecylamine (12CNH), and hexadecyl allyl ammonium chloride (HADC). The structures of the nanocomposites were investigated by X-ray diffraction and transmission electron microscopy, while the interaction between PMMA and MMT was characterized by Fourier transform infrared spectroscopy. The molecular mass of the extracted PMMA was measured by gel permeation chromatography. The thermal stability of PMMA/MMT nanocomposites was evaluated by thermogravimetric and differential scanning calorimetry. The results indicated that PMMA/MMT nanocomposites were successfully prepared and the interaction between PMMA and MMT of PMMA/MMT–HADC nanocomposites was the strongest. The thermal stability of the nanocomposites was improved and found to be optimal for PMMA/MMT–HADC with T 10 increasing to 304 °C, 52 °C higher than that of neat PMMA.  相似文献   

12.
Comprehensive high-performance epoxy nanocomposites were prepared by simultaneous incorporating montmorillonite (MMT) and nanoSiO2 into epoxy. Mechanical tests and thermal analyses showed that the epoxy/MMT/nanoSiO2 nanocomposites obtained considerable improvement over basic epoxy in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temperature. X-ray diffraction measurements and transmission electronic microscopy observations revealed that the layered structure of MMT was completely exfoliated into two-dimensional nanoscale mono-platelets. These 2D mono-platelets formed intermingled structure with the zero-dimensional nanoSiO2 spheres in the nanocomposites. This study suggests that employing the synergistic reinforcement effect of two dimensionally different nanoscale particles is one pathway to success in developing comprehensive high-performance polymer nanocomposites.  相似文献   

13.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

14.
15.
A new nano‐dimensional material, layered double hydroxide – montmorillonite (LDH‐MMT), has been synthesized by the formation of an LDH in the presence of MMT. The structure is studied using X‐ray diffraction, Fourier transform infrared, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy analysis. The LDH‐MMT shows a novel layered structure containing negatively charged MMT layers and positively charged LDH layers with some sodium ions required to balance the charge. LDH‐MMT can be ion‐exchanged to obtain organically modified LDH‐MMT, and this material can be well‐dispersed in polystyrene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   

17.
In this study, thermal and morphological properties of organically modified montmorillonite (mMMT)/poly(2,5-benzimidazole) (ABPBI) composite were investigated. The morphology and structure of mMMT/ABPBI composites were characterized by infrared, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis techniques. At low mMMT loading levels, exfoliation was the predominant mechanism of mMMT dispersion. At high mMMT loading levels, nonintercalated microcomposite morphology is partially favored in expense of the intercalated nanocomposite. Thermal degradation of nanocomposite occured in three stages. In the second stage of thermal degradation, the onset temperature of degradation for the mMMT/ABPBI nanocomposites was lower than that of ABPBI polymer. In the last stage, the improvement in thermal stability by the introduction of mMMT into the ABPBI was different from the second stage. The activation energy for degradation of ABPBI increased from 62.6 to 77.7 kJ mol?1 after loading of 5 mass% of mMMT into ABPBI matrix under air atmosphere.  相似文献   

18.
Exfoliated poly(dicyclopentadiene) (pDCPD)—montmorillonite (MMT) nanocomposites were synthesized via intergallery‐surface‐initiated ring opening metathesis polymerization (ROMP). This is the first example of in situ polymerization of pDCPD from clay intergallery surfaces using ROMP. Grubbs catalyst was immobilized on the surface of MMT clay modified with vinylbenzyl dimethyloctadecyl ammonium chloride (VOAC), and DCPD polymerized from the clay surface while simultaneously crosslinking to form a thermoset nanocomposite in a one‐pot reaction. X‐ray diffraction and transmission electron microscopy analysis indicated that the resultant nanocomposites exhibited exfoliated morphologies with heterogeneous clay platelet distribution. Conventional bulk‐initiated nanocomposites containing VOAC modified MMT were also synthesized as a comparison, and these resulted in nanocomposites with intercalated morphologies. The differences between the morphologies demonstrated that growing polymer chains from the initiator sites on the intergallery surface of the clay platelets pushed the platelets apart during the polymerization of the intergallery‐surface‐initiated nanocomposites, aiding in the exfoliation process. Compression testing indicated that the intergallery‐surface‐initiated nanocomposites led to improvements of up to 50% in the compressive Young's Modulus, while the bulk‐initiated nanocomposites at the same clay loadings did not exhibit improved properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo-montmorillonite (O-MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The dispersion state of the MMT in the matrix was investigated by X-ray diffraction and scanning electronic microscopy. The thermal stability of the epoxy nanocomposites was examined by TGA. Thermal stability of the epoxy nanocomposite is dependent upon the dispersion state of the OMMT in the epoxy matrix although all the epoxy nanocomposites had enhanced thermal stability compared with the neat epoxy resin. The thermal stability of the epoxy resin nanocomposites was correlated with the dispersion state of the MMT in the epoxy resin matrix.  相似文献   

20.
In the present study, polypropylene/aluminium trihydroxide/Fe‐montmorillonite (PP/ATH/Fe‐MMT) nanocomposites were prepared by melt‐intercalation method. This was been designed to determine whether the presence of structural iron in the matrix could enhance the thermal stability and flammability of nanocomposites. In order to prove the effect of Fe3+ in the structural silicate layers, samples of PP/ATH and PP/ATH/Na‐MMT (no Fe3+ in structural silicate layers) were prepared under the same conditions. Fe‐MMT and Na‐MMT were modified by cetyltrimethyl ammonium bromide (CTAB). The nanocomposite structures were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) was applied to test the thermal properties of nanocomposites. In addition, the limiting oxygen index (LOI) of PP/ATH/Fe‐MMT nanocomposites was increased, and no dripping phenomenon was found through the UL‐94 vertical burning test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号