首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
There is a documented need for more research on the mathematical beliefs of students below college. In particular, there is a need for more studies on how the mathematical beliefs of these students impact their mathematical behavior in challenging mathematical tasks. This study examines the beliefs on mathematical learning of five high school students and the students’ mathematical behavior in a challenging probability task. The students were participants in an after-school, classroom-based, longitudinal study on students’ development of mathematical ideas funded by the United States National Science Foundation. The results show that particular educational experiences can alter results from previous studies on the mathematical beliefs and behavior of students below college, some of which have been used to justify non-reform pedagogical approaches in mathematics classrooms. Implications for classroom practice and ideas for future research are discussed.  相似文献   

2.
For many students, developing mathematical reasoning can prove to be challenging. Such difficulty may be explained by a deficit in the core understanding of many arithmetical concepts taught in early school years. Multiplicative reasoning is one such concept that produces an essential foundation upon which higher‐level mathematical thinking skills are built. The purpose of this study is to recognize indicators of multiplicative reasoning among fourth‐grade students. Through cross‐case analysis, the researcher used a test instrument to observe patterns of multiplicative reasoning at varying levels in a sample of 14 math students from a low socioeconomic school. Results indicate that the participants fell into three categories: premultiplicative, emergent, and multiplier. Consequently, 12 new sublevels were developed that further describe the multiplicative thinking of these fourth graders within the categories mentioned. Rather than being provided the standard mathematical algorithms, students should be encouraged to personally develop their own unique explanations, formulas, and understanding of general number system mechanics. When instructors are aware of their students' distinctive methods of determining multiplicative reasoning strategies and multiplying schemes, they are more apt to provide the most appropriate learning environment for their students.  相似文献   

3.
This study aims at exploring processes of flexibility and coordination among acts of visualization and analysis in students’ attempt to reach a general formula for a three-dimensional pattern generalizing task.The investigation draws on a case-study analysis of two 15-year-old girls working together on a task in which they are asked to calculate the number of blocks in a three-dimensional tower of different heights. The students’ activity was video- and audio-taped, fully transcribed and lasted for 50 min.The analysis discloses several instances of how the students were linking acts of visualization and analysis to reach a general formula. However, regarding flexibility, we found that it was more natural for the students to change visual format than to change analytical position and direction in their attempts to generalize the three-dimensional pattern of the task in a closed formula.  相似文献   

4.
5.
The paper introduces an exploratory framework for handling the complexity of students’ mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students’ knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new facet, individual considerations of aptness, which accounts for the posers’ comprehensions of implicit requirements of a problem-posing task and reflects their assumptions about the relative importance of these requirements. The framework is first argued theoretically. The framework at work is illustrated by its application to a situation, in which two groups of high-school students with similar background were given the same problem-posing task, but acted very differently. The novelty and usefulness of the framework is attributed to its three main features: it supports fine-grained analysis of directly observed problem-posing processes, it has a confluence nature, it attempts to account for hidden mechanisms involved in students’ decision making while posing problems.  相似文献   

6.
To understand relationships between students’ quantitative reasoning with fractions and their algebraic reasoning, a clinical interview study was conducted with 18 middle and high school students. Six students with each of three different multiplicative concepts participated. This paper reports on the fractional knowledge and algebraic reasoning of six students with the most basic multiplicative concept. The fractional knowledge of these students was found to be consistent with prior research, in that the students had constructed partitioning and iteration operations but not disembedding operations, and that the students conceived of fractions as parts within wholes. The students’ iterating operations facilitated their work on algebra problems, but the lack of disembedding operations was a significant constraint in writing algebraic equations and expressions, as well as in generalizing relationships. Implications for teaching these students are discussed.  相似文献   

7.
Our purpose in this paper is to report on an observational study to show how students think about the links between the graph of a derived function and the original function from which it was formed. The participants were asked to perform the following task: they were presented with four graphs that represented derived functions and from these graphs they were asked to construct the original functions from which they were formed. The students then had to walk these graphs as if they were displacement-time graphs. Their discussions were recorded on audio tape and their walks were captured using data logging equipment and these were analysed together with their pencil and paper notes. From these three sources of data, we were able to construct a picture of the students’ graphical understanding of connections in calculus. The results confirm that at the start of the activity the students demonstrate an algebraic symbolic view of calculus and find it difficult to make connections between the graphs of a derived function and the function itself. By being able to ‘walk’ an associated displacement time graph, we propose that the students are extending their understanding of calculus concepts from symbolic representation to a graphical representation and to what we term a ‘physical feel’.  相似文献   

8.
We report a case study that explored how three college students mentally represented the knowledge they held of inferential statistics, how this knowledge was connected, and how it was applied in two problem solving situations. A concept map task and two problem categorization tasks were used along with interviews to gather the data. We found that the students’ representations were based on incomplete statistical understanding. Although they grasped various concepts and inferential tests, the students rarely linked key concepts together or to tests nor did they accurately apply that knowledge to categorize word problems. We suggest that one reason the students had difficulty applying their knowledge is that it was not sufficiently integrated. In addition, we found that varying the instruction for the categorization task elicited different mental representations. One instruction was particularly effective in revealing students’ partial understandings. This finding suggests that modifying the task format as we have done could be a useful diagnostic tool.  相似文献   

9.
This article reports on the activity of two pairs of sixth grade students who participated in an 8-month teaching experiment that investigated the students’ construction of fraction composition schemes. A fraction composition scheme consists of the operations and concepts used to determine, for example, the size of 1/3 of 1/5 of a whole in relation to the whole. Students’ whole number multiplicative concepts were found to be critical constructive resources for students’ fraction composition schemes. Specifically, the interiorization of two levels of units, a particular multiplicative concept, was found to be necessary for the construction of a unit fraction composition scheme, while the interiorization of three levels of units was necessary for the construction of a general fraction composition scheme. These findings contribute to previous research on students’ construction of fraction multiplication that has emphasized partitioning and conceptualizing quantitative units. Implications of the findings for teaching are considered.  相似文献   

10.
Within a constructivist perspective, I conducted a teaching experiment with two fourth graders to study how a teacher and students can jointly produce the reversible fraction conception. Ongoing and retrospective analysis of the data revealed the non-trivial process by which students can abstract multiplicative reasoning about fractions. The study articulates a conception in a developmental sequence of iteration-based fraction conceptions and the teacher’s role in fostering such a conception in students.  相似文献   

11.
The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential expressions on an assessment. Persistent errors are identified and characterized. Using quantitative and qualitative methods, we found that the concept of negativity played a prominent role in most of the students’ errors. We theorize that an underdeveloped conception of additive and multiplicative inverses is the root of these errors.  相似文献   

12.
Four seventh grade students participated in a constructivist teaching experiment in which manipulatives within a computer microworld were used to solve fractional reasoning tasks followed by tasks that involve concepts of rate, ratio and proportion. Through a retrospective analysis of video tapes, their thinking processes were analyzed from the perspective of the types of cognitive schemes of operation used as they engaged in the given problem situations. One result of the study indicates that the modifications of the students’ available schemes of operation when solving the fractional reasoning tasks formed a basis for the cognitive schemes of operation used in their solutions of tasks involving proportionality.  相似文献   

13.
Similarity is a fundamental concept in the middle grades. In this study, we applied Vergnaud's theory of conceptual fields to answer the following questions: What concepts‐in‐action and theorems‐in‐action about similarity surfaced when students worked in a novel task that required them to enlarge a puzzle piece? How did students use geometric and multiplicative reasoning at the same time in order to construct similar figures? We found that students used concepts of scaling and proportional reasoning, as well as the concept of circle and theorems about similar triangles, in their work on the problem. Students relied not only on visual perception, but also on numeric reasoning. Moreover, students' use of multiplicative and proportional concepts supported their geometric constructions. Knowledge of the concepts and ideas that students have available when working on a task about similarity can inform instruction by helping to ground formal introduction of new concepts in students' informal prior experiences and knowledge.  相似文献   

14.
Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students’ ways of thinking at a level that facilitates deeper understanding of how students conceptualize counting problems. To this end, a model of students’ combinatorial thinking was empirically and theoretically developed; it represents a conceptual analysis of students’ thinking related to counting and has been refined through analyzing students’ counting activity. In this paper, the model is presented, and relationships between formulas/expressions, counting processes, and sets of outcomes are elaborated. Additionally, the usefulness and potential explanatory power of the model are demonstrated through examining data both from a study the author conducted, and from existing literature on combinatorics education.  相似文献   

15.
Two hour-long interviews were conducted with each of 14 sixth-grade students. The purpose of the interviews was to investigate how students solved combinatorics problems, and represented their solutions as arrays. This paper reports on 11 of these students who represented a balanced mix of students operating with two of three multiplicative concepts that have been identified in prior research (Hackenberg, 2007, 2010; Hackenberg & Tillema, 2009). One finding of the study was that students operating with different multiplicative concepts established and structured pairs differently. A second finding is that these different ways of operating had implications for how students produced and used arrays. Overall, the findings contribute to models of students’ reasoning that outline the psychological operations that students use to constitute product of measures problems (Vergnaud, 1983). Product of measures problems are a kind of multiplicative problem that has unique mathematical properties, but researchers have not yet identified specific psychological operations that students use when solving these problems that differ from their solution of other kinds of multiplicative problems (cf. Battista, 2007).  相似文献   

16.
The collective case study described herein explores solution approaches to a task requiring visual reasoning by students and teachers unfamiliar with such tasks. The context of this study is the teaching and learning of calculus in the Palestinian educational system. In the Palestinian mathematics curriculum the roles of visual displays rarely go beyond the illustrative and supplementary, while tasks which demand visual reasoning are absent. In the study, ten teachers and twelve secondary and first year university students were presented with a calculus problem, selected in an attempt to explore visual reasoning on the notions of function and its derivative and how it interrelates with conceptual reasoning. A construct named “visual inferential conceptual reasoning” was developed and implemented in order to analyze the responses. In addition, subjects’ reflections on the task, as well as their attitudes about possible uses of visual reasoning tasks in general, were collected and analyzed. Most participants faced initial difficulties of different kinds while solving the problem; however, in their solution processes various approaches were developed. Reflecting on these processes, subjects tended to agree that such tasks can promote and enhance conceptual understanding, and thus their incorporation in the curriculum would be beneficial.  相似文献   

17.
This study is part of a large research and development project aimed at observing, describing and analyzing the learning processes of two seventh grade classes during a yearlong beginning algebra course in a computer intensive environment (CIE). The environment includes carefully designed algebra learning materials with a functional approach, and provides students with unconstrained freedom to use (or not use) computerized tools during the learning process at all times. This paper focuses on the qualitative and quantitative analyses of students’ work on one problem, which serves as a window through which we learn about the ways students worked on problems throughout the year. The analyses reveal the nature of students’ mathematical activity, and how such activity is related to both the instrumental views of the computerized tools that students develop and their freedom to use them. We describe and analyze the variety of approaches to symbolic generalizations, syntactic rules and equation solving and the many solution strategies pursued successfully by the students. On that basis, we discuss the strengths of the learning environment and the open questions and dilemmas it poses.  相似文献   

18.
In considering mathematics problem solving as a model-eliciting activity ( [Lesh and Doerr, 2003], [Lesh and Harel, 2003] and [Lesh and Zawojewski, 2008]), it is important to know what students are modeling for the problems: situations or solutions. This study investigated Grade 3 students’ mathematization process by examining how they modeled different types of multi-digit subtraction situation problems. Students’ modeling processes differed from one problem type to another due to their prior experiences and the complexity of the problems. This study showed that students make their own distinctions between solution and situation models in their mathematization process. Mathematics curricula and teaching should consider these distinctions to carefully facilitate different model development of and support student understanding of a content topic.  相似文献   

19.
This article communicates findings from a year-long constructivist teaching experiment about the relationship between four sixth-grade students’ multiplicative structures and their construction of improper fractions. Students’ multiplicative structures are the units coordinations that they can take as given prior to activity—i.e., the units coordinations that they have interiorized. This research indicates that the construction of improper fractions requires having interiorized three levels of units. Students who have interiorized only two levels of units may operate with fractions greater than one, but they don’t produce improper fractions. These findings call for a revision in Steffe's hypothesis (Steffe, L. P. (2002). A new hypothesis concerning children's fractional knowledge. Journal of Mathematical Behavior, 20, 267-307) that upon the construction of the splitting operation, students’ fractional schemes can be regarded as essentially including improper fractions. While the splitting operation seems crucial in the construction of improper fractions, it is not necessarily accompanied by the interiorization of three levels of units.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号