首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper characterizes the views on mathematical learning of five high school students based on the students’ reflections on their mathematical experiences in a longitudinal study that focused on the development of mathematical ideas and reasoning in particular research conditions. The students’ views are presented according to five themes about learning which describe the students’ views on the nature of knowledge and what it means to know, source of knowledge, motivation to engage in learning, certainty in knowing, and how the students’ views vary with particular areas of mathematical activity. The study addresses the need for more research on epistemological beliefs of students below college age. In particular, the results provide evidence that challenge the existing assumption that, prior to college, students exhibit naïve epistemological beliefs.  相似文献   

2.
As part of developmental research for an inquiry-oriented differential equations course, this study investigates the change in students’ beliefs about mathematics. The discourse analysis has identified two different types of perspective modes - i.e., discourse of the third-person perspective and discourse of the first-person perspective - in the students’ mathematical narratives, depending on their ways of positioning themselves with respect to mathematics. In the third-person perspective discourse, the students positioned themselves as passive recipients of mathematics that has been established by some external authority. In the first-person perspective discourse, the students positioned themselves as active mathematical inquirers and produced mathematics by interweaving their own mathematical ideas and experiences. Over the semester, students’ mathematical discourse changed from third-person perspective narratives to first-person perspective narratives. This change in their discourse pattern is interpreted as an indication of change in their beliefs about mathematics. Finally, this article discusses the instructional features that promote the change.  相似文献   

3.
College students’ epistemological belief in their academic performance of mathematics has been documented and is receiving increased attention. However, to what extent and in what ways problem solvers’ beliefs about the nature of mathematical knowledge and thinking impact their performances and behavior is not clear and deserves further investigation. The present study investigated how Taiwanese college students espousing unlike epistemological beliefs in mathematics performed differently within different contexts, and in what contexts these college students’ epistemological beliefs were consistent with their performances and behavior. Results yielded from the survey of students’ performances on standardized tests, semi-open problems, and their behaviors on pattern-finding tasks, suggest mixed consequences. It appears that beliefs played a more reliable role within the well-structured context but lost its credibility in non-standardized tasks.  相似文献   

4.
This paper reports two studies that examined the impact of early algebra learning and teachers’ beliefs on U.S. and Chinese students’ thinking. The first study examined the extent to which U.S. and Chinese students’ selection of solution strategies and representations is related to their opportunity to learn algebra. The second study examined the impact of teachers’ beliefs on their students’ thinking through analyzing U.S. and Chinese teachers’ scoring of student responses. The results of the first study showed that, for the U.S. sample, students who have formally learned algebraic concepts are as likely to use visual representations as those who have not formally learned algebraic concepts in their problem solving. For the Chinese sample, students rarely used visual representations whether or not they had formally learned algebraic concepts. The findings of the second study clearly showed that U.S. and Chinese teachers view students’ responses involving concrete strategies and visual representations differently. Moreover, although both U.S. and Chinese teachers value responses involving more generalized strategies and symbolic representations equally high, Chinese teachers expect 6th graders to use the generalized strategies to solve problems while U.S. teachers do not. The research reported in this paper contributed to our understanding of the differences between U.S. and Chinese students’ mathematical thinking. This research also established the feasibility of using teachers’ scoring of student responses as an alternative and effective way of examining teachers’ beliefs.  相似文献   

5.
Productive mathematical classroom discourse allows students to concentrate on sense making and reasoning; it allows teachers to reflect on students’ understanding and to stimulate mathematical thinking. The focus of the paper is to describe, through classroom vignettes of two teachers, the importance of including all students in classroom discourse and its influence on students’ mathematical thinking. Each classroom vignette illustrates one of four themes that emerged from the classroom discourse: (a) valuing students’ ideas, (b) exploring students’ answers, (c) incorporating students’ background knowledge, and (d) encouraging student-to-student communication. Recommendations for further research on classroom discourse in diverse settings are offered.  相似文献   

6.
Our goal in this research was to understand the specific challenges middle-school students face when engaging in mathematical problem-solving by using executive function (i.e., shifting, updating, and inhibiting) of working memory as a functional construct for the analysis. Using modified talk-aloud protocols, real-time naturalistic analysis of eighth-grade students’ mathematical problem-solving were conducted. A fine-grained coding of the students’ talking-aloud during problem-solving in mathematics involved isolating the challenges students faced in each one of the four problem-solving phases, and then making a functional link to one of the executive functions of shifting, updating, and inhibiting. In total, 344 episodes were analyzed. Our results show that updating proved to be most challenging during the understanding the problem phase, inhibiting during the carrying out the plan phase, and shifting during the looking back and evaluation phase. Furthermore, students are more likely to make progress with the problem-solving if they are able to engage in a conscious appraisal of the problem at the onset of the problem-solving. Assisting students in establishing what the problem requires through the cognitive clues presented in the problem may necessitate explicit instructional on behalf of the teacher.  相似文献   

7.
By continuing a contrast with the DNR research program, begun in Harel and Koichu (2010), I discuss several important issues with respect to teaching and learning mathematics that have emerged from our research program which studies learning that occurs through students’ mathematical activity and indicate issues of complementarity between DNR and our research program. I make distinctions about what we mean by inquiring into the mechanisms of conceptual learning and how it differs from work that elucidates steps in the development of a mathematical concept. I argue that the construct of disequilibrium is neither necessary nor sufficient to explain mathematics conceptual learning. I describe an emerging approach to instruction aimed at particular mathematical understandings that fosters reinvention of mathematical concepts without depending on students’ success solving novel problems.  相似文献   

8.
The validity of students’ reasoning is central to problem solving. However, equally important are the operating premises from which students’ reason about problems. These premises are based on students’ interpretations of the problem information. This paper describes various premises that 11- and 12-year-old students derived from the information in a particular problem, and the way in which these premises formed part of their reasoning during a lesson. The teacher’s identification of differences in students’ premises for reasoning in this problem shifted the emphasis in a class discussion from the reconciliation of the various problem solutions and a focus on a sole correct reasoning path, to the identification of the students’ premises and the appropriateness of their various reasoning paths. Problem information that can be interpreted ambiguously creates rich mathematical opportunities because students are required to articulate their assumptions, and, thereby identify the origin of their reasoning, and to evaluate the assumptions and reasoning of their peers.  相似文献   

9.
The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential expressions on an assessment. Persistent errors are identified and characterized. Using quantitative and qualitative methods, we found that the concept of negativity played a prominent role in most of the students’ errors. We theorize that an underdeveloped conception of additive and multiplicative inverses is the root of these errors.  相似文献   

10.
In this work we studied the impact of using NuCalc, an interactive computer algebra software, on the development of a discourse community in a college level mathematics class. Qualitative and quantitative data were collected over the course of 3 weeks of instruction. We examined the influence of the software on: group interactions; the mathematical investigations of learners; and the teacher’s interactions with students. Data points to four distinct ways in which the presence of NuCalc positively impacted the learning community we studied: (1) it served as a tool for extending students’ mathematical thinking, (2) it motivated students’ engagement in group discourse, (3) it became a tool for mediating discourse, (4) it became a catalyst for refining the culture of classroom, shifting the patterns of interactions between the teacher and learners.  相似文献   

11.
In line with current efforts to understand the piece-by-piece structure and articulation of children’s mathematical concepts, this case study compares the reversibility schemes of two eighth-grade students. The aim of the study was to identify the mechanism through which students reverse their thought processes in a multiplicative situation. Data collected through clinical interviews depict the precise strategies that the participants used to work back to find the missing values in an inverse proportional task. This study also illustrates how a conceptual template generated by one of the participants afforded him considerable flexibility in the multiplicative task. Another outcome of the study is that it shows how the numerical characteristics of the parameters in the problem affected the students’ ability to reverse their thought processes. We infer that there is a need for further research on how students might represent their reversibility schemes in the form of algebraic equations.  相似文献   

12.
This work investigates the relationship between teachers’ mathematical activity and the mathematical activity of their students. By analyzing the classroom video data of mathematicians implementing an inquiry-oriented abstract algebra curriculum I was able to identify a variety of ways in which teachers engaged in mathematical activity in response to the mathematical activity of their students. Further, my analysis considered the interactions between teachers’ mathematical activity and the mathematical activity of their students. This analysis suggests that teachers’ mathematical activity can play a significant role in supporting students’ mathematical development, in that it has the potential to both support students’ mathematical activity and influence the mathematical discourse of the classroom community.  相似文献   

13.
In this research report we consider the kinds of knowledge needed by a mathematician as she implemented an inquiry-oriented abstract algebra curriculum. Specifically, we will explore instances in which the teacher was unable to make sense of students’ mathematical struggles in the moment. After describing each episode we will examine the instructor's efforts to listen to the students and the way that these efforts were supported or constrained by her mathematical knowledge for teaching. In particular, we will argue that in each case the instructor was ultimately constrained by her knowledge of how students were thinking about the mathematics.  相似文献   

14.
It is widely accepted by mathematics educators and mathematicians that most proof-oriented university mathematics courses are taught in a “definition-theorem-proof” format. However, there are relatively few empirical studies on what takes place during this instruction, why this instruction is used, and how it affects students’ learning. In this paper, I investigate these issues by examining a case study of one professor using this type of instruction in an introductory real analysis course. I first describe the professor’s actions in the classroom and argue that these actions are the result of the professor’s beliefs about mathematics, students, and education, as well as his knowledge of the material being covered. I then illustrate how the professor’s teaching style influenced the way that his students attempted to learn the material. Finally, I discuss the implications that the reported data have on mathematics education research.  相似文献   

15.
Non-attendance to meaning by students is a prevalent phenomenon in school mathematics. Our goal is to investigate features of instruction that might account for this phenomenon. Drawing on a case study of two high school algebra teachers, we cite episodes from the classroom to illustrate particular teaching actions that de-emphasize meaning. We categorize these actions as pertaining to (a) purpose of new concepts, (b) distinctions in mathematics, (c) mathematical terminology, and (d) mathematical symbols. The specificity of the actions that we identify allows us to suggest several conjectures as to the impact of the teaching practices observed on student learning: that students will develop the belief that mathematics involves executing standard procedures much more than meaning and reasoning, that students will come to see mathematical definitions and results as coincidental or arbitrary, and that students’ treatment of symbols will be largely non-referential.  相似文献   

16.
In discussion-oriented classrooms, students create mathematical ideas through conversations that reflect growing collective knowledge. Linguistic forms known as indexicals assist in the analysis of this collective, negotiated understanding. Indexical words and phrases create meaning through reference to the physical, verbal and ideational context. While some indexicals such as pronouns and demonstratives (e.g. this, that) are fairly well-known in mathematics education research, other structures play significant roles in math discussions as well. We describe students’ use of entailing and presupposing indexicality, verbs of motion, and poetic structures to express and negotiate mathematical ideas and classroom norms including pedagogical responsibility, conjecturing, evaluating and expressing reified mathematical knowledge. The multiple forms and functions of indexical language help describe the dynamic and emergent nature of mathematical classroom discussions. Because interactive learning depends on linguistically established connections among ideas, indexical language may prove to be a communicative resource that makes collaborative mathematical learning possible.  相似文献   

17.
Mathematization is critical in providing students with challenges for solving modelling tasks. Inadequate assumptions in a modelling task lead to an inadequate situational model, and to an inadequate mathematical model for the problem situation. However, the role of assumptions in solving modelling problems has been investigated only rarely. In this study, we intentionally designed two types of assumptions in two modelling tasks, namely, one task that requires non-numerical assumptions only and another that requires both non-numerical and numerical assumptions. Moreover, conceptual knowledge and procedural knowledge are also two factors influencing students’ modelling performance. However, current studies comparing modelling performance between Western and non-Western students do not consider the differences in students’ knowledge. This gap in research intrigued us and prompted us to investigate whether Taiwanese students can still perform better than German students if students’ mathematical knowledge in solving modelling tasks is differentiated. The results of our study showed that the Taiwanese students had significantly higher mathematical knowledge than did the German students with regard to either conceptual knowledge or procedural knowledge. However, if students of both countries were on the same level of mathematical knowledge, the German students were found to have higher modelling performance compared to the Taiwanese students in solving the same modelling tasks, whether such tasks required non-numerical assumptions only, or both non-numerical and numerical assumptions. This study provides evidence that making assumptions is a strength of German students compared to Taiwanese students. Our findings imply that Western mathematics education may be more effective in improving students’ ability to solve holistic modelling problems.  相似文献   

18.
The introduction of technology resources into mathematics classrooms promises to create opportunities for enhancing students’ learning through active engagement with mathematical ideas; however, little consideration has been given to the pedagogical implications of technology as a mediator of mathematics learning. This paper draws on data from a 3-year longitudinal study of senior secondary school classrooms to examine pedagogical issues in using technology in mathematics teaching — where “technology” includes not only computers and graphics calculators but also projection devices that allow screen output to be viewed by the whole class. We theorise and illustrate four roles for technology in relation to such teaching and learning interactions — master, servant, partner, and extension of self. Our research shows how technology can facilitate collaborative inquiry, during both small group interactions and whole class discussions where students use the computer or calculator and screen projection to share and test their mathematical understanding.  相似文献   

19.
This paper presents the second phase of a larger research program with the purpose of exploring the possible consequences of a gap between what is done in the classroom regarding mathematical word problem solving and what research shows to be effective in this particular field of study. Data from the first phase of our study on teachers’ self-proclaimed practices showed that one-third of elementary teachers from the region of Quebec require their students to follow a specific sequential problem-solving method, known as the ‘what I know, what I look for’ method. These results led us to hypothesize that the observed gap may have an impact on students’ comprehension of mathematical word problems. The use of this particular method was the foundation for us to study, in the second phase, the effect of the imposition of this sequential method on students’ literal and inferential understanding of word problems. A total of 278 fourth graders (9–10 years old) solved mathematical word problems followed by a test to assess their understanding of the word problems they had just solved. The results suggest that the use of this problem solving method does not seem to improve or impair students’ understanding. From a more fundamental point of view, our study led us to the conclusion that the way word problem solving is addressed in the mathematics classroom, through sequential and inflexible methods, does not help students develop their word problem solving competence.  相似文献   

20.
Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students’ ways of thinking at a level that facilitates deeper understanding of how students conceptualize counting problems. To this end, a model of students’ combinatorial thinking was empirically and theoretically developed; it represents a conceptual analysis of students’ thinking related to counting and has been refined through analyzing students’ counting activity. In this paper, the model is presented, and relationships between formulas/expressions, counting processes, and sets of outcomes are elaborated. Additionally, the usefulness and potential explanatory power of the model are demonstrated through examining data both from a study the author conducted, and from existing literature on combinatorics education.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号