首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present what we believe to be the first morphological evidence for the occurrence of surface pre-melting on the Si(1 1 1) surface. Our results complement the extensive previous evidence from diffraction and ion scattering techniques for the presence of pre-melted (liquid-like) layers on Si(1 1 1) below the bulk melting temperature and also suggest how atomic steps are involved in the initiation of such layers. Our results are based on atomic force microscopy studies of morphologies that are preserved when surfaces are annealed in a range of high temperatures and then rapidly cooled to room temperature for observation. A unique feature of the experiments is the use of specially prepared atomically flat or very low step density surfaces; this allows us to see how the liquid-like morphologies are associated with the steps and also allows the high temperature structures to survive the cooling process without being absorbed into the steps which normally would exist on a surface vicinal to (1 1 1). Quenched-in structures ascribed to pre-melting also act as sinks for diffusing ‘excess’ adatoms generated by the (1 × 1) to (7 × 7) transition and this leads to the formation of dendritic islands.  相似文献   

2.
The Si(0 0 1) surface morphology during ion sputtering at elevated temperatures and solid phase epitaxy (SPE) following ion sputtering at room temperature has been investigated using scanning tunneling microscopy. Two types of antiphase boundaries form on Si(0 0 1) surfaces during ion sputtering and SPE. One type of antiphase boundary, the AP2 antiphase boundary, contributes to the surface roughening. AP2 antiphase boundaries are stable up to 700 °C, and ion sputtering and SPE performed at 700 °C result in atomically flat Si(0 0 1) surfaces.  相似文献   

3.
The structure of the hydroxylated hematite (0 0 0 1) surface was investigated using crystal truncation rod diffraction and density functional theory. The combined experimental and theoretical results suggest that the surface is dominated by two hydroxyl moieties—hydroxyls that are singly coordinated and doubly coordinated with Fe. The results are consistent with the formation of distinct domains of these surface species; one corresponding to the hydroxylation of the surface Fe-cation predicted to be most stable under UHV conditions, and the second a complete removal of this surface Fe species leaving the hydroxylated oxygen layer. Furthermore, our results indicate that the hydroxylated hematite surface structures are significantly more stable than their dehydroxylated counterparts at high water partial pressures, and this transition in stability occurs at water pressures orders of magnitude below the same transition for α-alumina. These results explain the observed differences in reactivity of hematite and alumina (0 0 0 1) surfaces with respect to water and binding of aqueous metal cations.  相似文献   

4.
The oxidation of Ni(1 0 0) and Ni(1 1 1) at elevated temperatures and large oxygen exposures, typical of the methods used in the preparation of NiO(1 0 0) films for surface studies, has been investigated by medium energy ion scattering (MEIS) using 100 keV H+ incident ions. Oxide film growth proceeds significantly faster on Ni(1 1 1) than on Ni(1 0 0), but on both surfaces oxide penetration occurs to depths significantly greater than 100 Å with total exposures of 1200 and 6000 L respectively. The metal/oxide interface is extremely rough, with metallic Ni extending to the surface, even for much thicker oxide films on Ni(1 1 1). On Ni(1 1 1), NiO growth occurs with the (1 0 0) face parallel to the Ni(1 1 1) surface and the close-packed 〈1 1 0〉 directions parallel. On Ni(1 0 0) the MEIS blocking curves cannot be reconciled with a single orientation of NiO(1 0 0) (with the 〈1 1 0〉 directions parallel) on the surface, but is consistent with the substantial orientational disorder (including tilt) previously identified by spot-profile analysis LEED.  相似文献   

5.
A simple solid-on-solid model, proposed earlier to describe overlayer-induced faceting of bcc(1 1 1) surface, is applied to faceting of curved surfaces covered by an adsorbate monolayer. Surfaces studied in this paper are formed by a part of sphere around the [1 1 1] pole. Results of Monte Carlo simulations show that the morphology of a faceted surface depends on the annealing temperature. At an initial stage the surface around the [1 1 1] pole consists of 3-sided pyramids and step-like facets, then step-like facets dominate and their number decreases with temperature, finally a single big pyramid is formed. It is shown that there is a reversible phase transition at which a faceted surface transforms to an almost spherical one. It is found that the temperature of this phase transition is an increasing function of the surface curvature. Simulation results show that measurements of high temperature properties performed directly and after fast cooling down to a low temperature lead to different results.  相似文献   

6.
The formation and stability of Cu, Ag and Au-induced c(2 × 2) alloys at the Mo(1 0 0) and W(1 0 0) surfaces have been investigated with low-energy electron microscopy and diffraction. The ordered alloys transform to disordered overlayer structures at elevated temperature. Comparison of the transformation temperatures with energetics obtained from first principles calculations reveals the vibrational entropic contribution to the system free energy that defines alloy thermal stability. Effective Debye temperatures for metal adatoms are determined that exhibit the expected mass and bond strength dependence.  相似文献   

7.
Trimetallic nitride template fullerenes have been deposited onto a variety of substrates in order to elucidate the substrate-fullerene interactions. We have investigated self-assembled island formation and molecular detail of Er3N@C80 and Sc3N@C80 on Ag/Si(1 1 1), Au(1 1 1)/mica, Si(1 1 1), and Si(0 0 1) using variable temperature scanning tunnelling microscopy (STM). At room temperature, the fullerenes self-assemble into monolayer-high hexagonal close-packed islands on Ag-passivated Si(1 1 1) whereas annealing at elevated temperatures (250-300 °C) is necessary for the self-assembly of close-packed islands on Au(1 1 1). Intra-molecular resolution of the fullerenes has been achieved at liquid nitrogen temperature on Ag/Si(1 1 1) and already at room temperature on Si(0 0 1), when the rotation of the fullerenes is frozen. Whereas the bonding between the fullerenes and Si surfaces is mainly covalent, it appears to be mainly van-der-Waals on the other surfaces.  相似文献   

8.
C.P. Flynn 《Surface science》2007,601(7):1648-1658
This paper treats flow of defects between bulk and surface sites, as a crystal passes towards equilibrium, for some practical cases. These include the realistic but quite elaborate example in which vacancy flow from the bulk is coupled to surface step edges, acting as sinks, by reaction with adatoms that are believed to dominate transport on metal surfaces. It is shown how surface processes modify the defect flow from the bulk only at short times. Lacking accurate parameters (such as concentrations) for surface defects, a crude modeling of the theoretical results is offered in order to explore likely generic behavior. The model employs a recently described approximate universality of behavior, scaled to the melting temperature, relevant mainly to fcc (1 1 1) surfaces. Under a range of conditions it is the reaction of advacancies with adatoms that provides the important channel for bulk vacancy flow. Adatom flow onto the terraces from surface step edge sinks is the bottleneck to flow above a crossover temperature (depending on step spacing) and equilibrium recombination is the bottleneck below the crossover.  相似文献   

9.
All-electron full-potential linearized augmented plane-wave calculations of the surface energy, work function, and interlayer spacings of close-packed metal surfaces are presented, in particular, for the free-electron-like metal surfaces, Mg(0 0 0 1) and Al(1 1 1), and for the transition metal surfaces, Ti(0 0 0 1), Cu(1 1 1), Pd(1 1 1), and Pt(1 1 1). We investigate the convergence of the surface energy as a function of the number of layers in the slab, using the Cu(1 1 1) surface as an example. The results show that the surface energy, as obtained using total energies of the slab and bulk from separate calculations, converges well with respect to the number of layers in the slab. Obviously, it is necessary that bulk and surface calculations are performed with the same high accuracy. Furthermore, we discuss the performance of the local-density and generalized gradient approximations for the exchange-correlation functional in describing the various surface properties.  相似文献   

10.
To gain an initial understanding of the copper-based catalysts in commercially important chemical reactions such as the oxygen-assisted water-gas shift reaction, we performed density-functional theory calculations, investigating the interaction of oxygen and copper, focusing on the relative stability of surface oxides and oxide surfaces of the O/Cu system. By employing the technique of “ab initio atomistic thermodynamics”, we show that surface oxides are only metastable at relevant pressures and temperatures of technical catalysis, with no stable chemisorption phase observed even at very low coverage. Although exhibiting only metastability, these surface oxides resemble the bulk oxide material both geometrically and electronically, and may serve as a precursor phase before onset of the bulk oxide phase. Having identified the bulk oxide as the most stable phase under realistic catalytic conditions, we show that a Cu2O(1 1 1) surface with Cu vacancies has a lower free energy than the stoichiometric surface for the considered range of oxygen chemical potential and could be catalytically relevant.  相似文献   

11.
L.J. Pedri 《Surface science》2007,601(4):924-930
The Au-induced changes in the surface morphology of a Si(1 1 1) sample miscut 8° towards have been measured using room temperature scanning tunneling microscopy and low energy electron diffraction. Au coverages of less than 0.06 ML up to 0.43 ML have been investigated. In all cases Au adsorption produces dramatic changes in surface morphology. The Au-induced surface exhibits nanofacets with orientations that depend critically on the amount of Au deposited. Below 0.32 ML, the restructured surface always includes (7 7 5)-Au nanofacets suggesting that the (7 7 5)-Au facet is energetically preferred on this surface. The (7 7 5)-Au facet is oriented 8.5° from [1 1 1] towards and is characterized by 1-d chains spaced 21.3 Å apart that run along the direction. By maximizing the surface area of the (7 7 5) facets and optimizing the associated diffraction pattern we determine that the (7 7 5)-Au reconstruction is optimized at 0.24 ML and corresponds to a stoichiometry of 1.5 Au atoms per 1 × 1 unit cell. We believe that the local Au coverage on the (7 7 5) facet is 0.24 ML, and that the deficit/extra of Au at any particular coverage is accommodated by non-(7 7 5) facets. For example at 0.06 ML the regions of step bunching observed on the clean surface are eliminated and Au-induced (7 7 5) and Au-free (1 1 1)7 × 7 facets are already visible. Up to 0.18 ML the non-(7 7 5) facet is Au free. Beyond 0.32 ML, the (7 7 5)-Au reconstruction is no longer stable and the extra Au is accommodated by the formation of higher angle facets with smaller chain spacings.  相似文献   

12.
Lattice mismatch plays a determining role in surface atomic diffusion in epitaxy. One effect is the increasing anisotropy of diffusion along close-packed steps of adsorbed islands on (1 1 1) surfaces with increasing strain in the layer as shown by previous works on homoepitaxy and heteroepitaxy where the adlayer is under compressive strain. In most of these investigations the barrier of diffusion along steps with triangular microfacets (B steps) is greater than the barrier of diffusion along steps with square microfacets (A steps). Through atomistic simulations of a system under tensile strain, Co/Pt(1 1 1), we evidence reversal behaviour with a much smaller barrier obtained for diffusion at B step. Such effect results from a particular diffusion path along B step having a low cost in energy and being specific to tensile strain systems.  相似文献   

13.
The NiPd(1 1 0) alloy surface was studied using low energy electron diffraction to measure the structure and composition of the first three atomic layers. The surface layer is highly enriched in Pd and has a significantly buckled structure. The second layer is also buckled, with displacements even larger than the surface layer. The second layer also exhibits intralayer segregation (chemical ordering), with alternate close-packed rows of atoms being Ni enriched and Pd enriched. The third layer has a structure and composition close to that of the bulk alloy. These results are compared with results for the other low index faces of NiPd, the extensive literature on NiPt alloy surfaces, and the growing body of theoretical literature for NiPd alloy surfaces.  相似文献   

14.
The empirical electron surface model (EESM) based on the empirical electron theory and the dangling bond analysis method has been used to establish a database of surface energy for low-index surfaces of fcc-metals such as Al, Mn, Co, Ni, Cu, Pd, Ag, Pt, Au, and Pb. A brief introduction of EESM will be presented in this paper. The calculated results are in agreement with experimental and other theoretical values. Comparison of the experimental results and calculation values shows that the average relative error is less than 10% and these values show a strong anisotropy. As we predicted, the surface energy of the close-packed plane (1 1 1) is the lowest one of all index surfaces. For low-index planes, the order of the surface energies is γ(1 1 1) < γ(1 0 0) < γ(1 1 0) < γ(2 1 0). It is also found that the dangling bond electron density and the spatial distribution of covalent bonds have a great influence on surface energy of various index surfaces.  相似文献   

15.
We have performed first principles calculations for clean and Pd doped Ag(1 1 1) and Ag(1 0 0) surfaces, with and without adsorbed O and CO. Our results for the structure of the Pd doped Ag surfaces indicate that Pd atoms are located lower than the surrounding Ag surface atoms. We find that O atoms adsorbed on Pd doped Ag(1 1 1) reside at the fcc hollow sites, the site next to Pd being slightly favored. Moreover, we provide results for O and CO co-adsorption on the clean and Pd doped Ag(1 1 1) surfaces, indicating that Pd can act as an electronic promoter for the CO oxidation reaction.  相似文献   

16.
Registration markers are crucial in connecting scanning tunneling microscope (STM) lithographed nano- and atomic-scale devices to the outside world. In this paper we revisit an ultra high vacuum annealing method with a low thermal budget that is fully compatible with etched registration markers and results in clean 2 × 1 reconstructed Si(1 0 0) surfaces required for STM lithography. Surface contamination is prevented by chemically stripping and reforming a protective silicon oxide layer before transferring the sample to the vacuum system. This allows for annealing temperatures of only 900 °C, where normally carbon contaminants result in the formation of SiC clusters on the surface at annealing temperatures below 950 °C. Reactive ion etched marker structures with an etch depth of 60 nm and a typical lateral dimension of only 150 nm survive a 900 °C flash anneal.  相似文献   

17.
(n × 1) reconstructions and facetting of the (1 1 0) polar surface of SrTiO3 are studied by means of a combination of shell model and density functional calculations. The polarity compensation can be achieved through the formation of {1 0 0} nano-facets, which play a crucial role in the reconstruction process. The behaviors of various possible terminations (Sr, Ti, and O) are analyzed, as well as their atomic structure and energetics. Their stability in different chemical environments is discussed, with respect to previous formulations and experimental results. The Sr-terminated surface tends to expose large facets, while the TiO and O terminations are marginally stabilized or even destabilized by (n × 1) reconstructions, respectively. Trend to facetting results from a subtle competition between the thermodynamic stability of the ideal non stoichiometric (n × 1) surfaces, and huge atomic relaxations that contribute to the lowering of the surface energy differently for each termination.  相似文献   

18.
Using the first-principles calculations within density functional theory (DFT), we have studied the behavior of Friedel oscillations near Al (1 0 0), (1 1 0), and (1 1 1) surfaces. The results show that for the most open Al (1 1 0) surface, the Friedel oscillation exhibits smaller oscillation amplitude, bigger wavelength and deeper depth of penetration compared to the oscillations of the more close-packed Al (1 1 1) and (1 0 0) surfaces. The characteristics of the Friedel oscillations of the Al surfaces are dominated by the charge density of Al 3p electrons near the Fermi level. We further calculate relaxations of the three surfaces, and find that the multilayer relaxations of the surfaces can be well explained by the Friedel oscillations qualitatively. In turn, we have shown that by altering interlayer spacing slightly the oscillation amplitude can be tuned, but the change near the surface is in contrary to the prediction based on the jellium model, indicating that the real lattice structure will plays a key role in the Friedel oscillations near the metal surface.  相似文献   

19.
Y. Yun  D. Liao  E.I. Altman 《Surface science》2007,601(19):4636-4647
The effect of ferroelectric poling direction on the structure and electronic properties of the LiNbO3 (0 0 0 1) surface was characterized. Low energy and reflection high energy electron diffraction indicated that both the positively and negatively poled surfaces were (1 × 1) with no evidence of longer range periodic reconstructions. Low energy ion scattering spectra from both surfaces were dominated by scattering from oxygen atoms. X-ray and ultraviolet photoelectron spectra also showed little difference between the positively and negatively poled surfaces, with the exception of a high binding energy shoulder on the O 1s core level of the negative surface. Exposure of the surfaces to atomic hydrogen caused reduction of the surface Nb rather than an increase in intensity on the high binding energy side of the O 1s peak, indicating that the shoulder on the O 1s peak on the negative surface was not due to surface hydroxyl groups. Temperature programmed desorption measurements indicated that the nearly stoichiometric LiNbO3 samples were susceptible to loss of Li2O starting at temperatures as low as 500 K, independent of the poling direction. An adatom/vacancy model is proposed in which oxygen ad-anions accumulate on one side of the crystal while oxygen anion vacancies are created on the opposite surface. This model can explain the apparent oxygen termination of both surfaces and the observed (1 × 1) periodicity of the surfaces, and also effectively screens the thickness dependent electric field associated with the polar orientation of the crystal.  相似文献   

20.
Electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) are used to correlate crystallographic grain orientation with corrosion rates of polycrystalline alloy 22 following immersion in 1 and 3 molar (M) hydrochloric acid. For each acid concentration, relative corrosion rates are simultaneously characterized for approximately 50 unique grain orientations. The results demonstrate that the corrosion rate anisotropies are markedly different in the two acid concentrations. In very aggressive acidic environments (3M HCl), where electrochemical impedance spectroscopy and spectroscopic ellipsometry data demonstrate that the passive oxide film of alloy 22 is completely dissolved, alloy dissolution rates scale inversely with the average coordination number of surface atoms for a given grain orientation, where highly correlated surfaces dissolve the slowest. Thus, similar to simple metallic systems, the corrosion rates scale with the surface plane-normal crystallographic orientations as {1 1 1} < {1 0 0} < {1 1 0}. Less intuitively, in milder corrosive environments (1M HCl), where the passive film of the alloy is still intact, the dissolution does not scale inversely with surface atomic density. Rather, corrosion rates scale with crystallographic orientations as {1 1 1} < {1 1 0} < {1 0 0}. This is attributed to the fact that facets most susceptible to corrosion (least coordinated) are also the most able to form protective oxides, so that the dissolution anisotropy is a result of the delicate balance between metal dissolution and oxide growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号