首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
在现代分析领域中,对于生物传感器的要求不断倾向于微型化和便捷化。基于酶型生物燃料电池的自供能传感器在检测目标物的同时可以提供能量,避免了外电源的使用,为生物传感器的微型化和便捷化发展提供了有效途径,日益成为人们关注的焦点。本文按照设计原理进行分类,对近五年内发展的基于酶型生物燃料电池的自供能传感器进行了综述,并展望了其今后的研究趋势和应用前景。  相似文献   

2.
酶生物燃料电池(Enzymatic biofuel cells,EBFCs)具有高专一性和催化性能,可催化与氧化还原反应有关的燃料并获得电能.可用的生物燃料,如葡萄糖、乳酸和丙酮酸盐,可以从汗液、泪液和血液中提取,因而以体液为燃料的EBFCs在可植入式或可穿戴式设备中具有良好的应用前景.采用生物电催化机理对酶生物燃料电池在体液发电中的应用进行了研究,以及对可植入式或可穿戴式生物燃料电池的主要挑战和未来的前景进行了展望.  相似文献   

3.
生物燃料电池的研究进展   总被引:13,自引:1,他引:12  
宝玥  吴霞琴 《电化学》2004,10(1):1-8
简要介绍生物燃料电池的工作原理、分类,归纳近年来国内外研究现状.讨论了电子传递媒介体在生物燃料电池中的作用以及如何提高电池性能的对策.最后,探讨了影响生物燃料电池研究进展的瓶颈,并展望其应用前景.  相似文献   

4.
质子交换膜燃料电池的研究   总被引:9,自引:0,他引:9  
葛善海  衣宝廉 《电化学》1998,4(3):299-306
通过测定电压-电流密度曲线等方法研究质子交换膜燃料电池的电极参数。构造了Ecell=0.7V,I=0.55A/cm^2并能够稳定运行的燃料电池。改进电池的电极结构,研究了各种操作条件如温度,压力,增湿情况,尾气流量等对电池性能的影响。  相似文献   

5.
制备了以乙烷作为燃料电池膜电极组装(MEA)及构建了单电池系统。研究了Nafion材料作为质子传导膜、Pt/C作为电极催化剂构成的燃料电池在105 ℃和0.4 MPa电化学性能。采用交流阻抗分析法、色谱分析法及根据Faraday定律,考察了电池的电极极化过程,确定了电池的反应产物并探讨了电极的电化学反应机理。研究结果表明,乙烷燃料电池内阻引起的欧姆极化很小,电池阴极的极化主要是欧姆极化过程所控制,阳极极化主要为活化和浓差过程控制,阳极极化比阴极极化显著,乙烷燃料电池的极化主要在阳极侧;在实验操作条件下,阴极反应产物为水,阳极反应的主产物为CO2且含有少量的CO,电池反应产物不含乙烯。  相似文献   

6.
曾涵  杨阳  赵淑贤 《无机化学学报》2015,31(12):2305-2314
以合成的4-巯基苯甲酸功能化纳米金粒子和聚乙烯基吡啶包覆纳米金粒子分别作为固酶载体,制备了2种新型固酶电极,在此基础上组装了2种酶燃料电池。采用电化学方法结合紫外可见分光光度法、透射电镜技术等手段研究了固酶载体的形貌,酶-载体间相互作用对电极表面固定酶分子的光谱学性质,酶-电极间直接电子迁移能力和催化底物反应性能的影响,进一步评估和比较了两种酶燃料电池的能量输出性能。实验结果表明:4-巯基苯甲酸功能化纳米金粒子固酶基电极可以实现酶-电极间的直接电子迁移而且对葡萄糖和氧气具有良好的催化性能(催化反应起始电位分别为-0.03和0.96 V,底物转化频率分别是1.3和0.5 s-1),其催化性能的重现性、长期使用性能、酸碱耐受性和热稳定性良好,随着自组装固酶层数的增加,催化性能随之增强直至达到极限催化电流;电池性能测试结果表明4-巯基苯甲酸功能化纳米金粒子固酶基燃料电池的开路电压为0.88 V,最大输出能量密度:864.0 μW·cm-2,长期使用性能优异(储存3 周后仍可达到最佳能量输出的80%以上)。  相似文献   

7.
以合成的4-巯基苯甲酸功能化纳米金粒子和聚乙烯基吡啶包覆纳米金粒子分别作为固酶载体, 制备了2种新型固酶电极, 在此基础上组装了2种酶燃料电池。采用电化学方法结合紫外可见分光光度法、透射电镜技术等手段研究了固酶载体的形貌, 酶-载体间相互作用对电极表面固定酶分子的光谱学性质, 酶-电极间直接电子迁移能力和催化底物反应性能的影响, 进一步评估和比较了两种酶燃料电池的能量输出性能。实验结果表明:4-巯基苯甲酸功能化纳米金粒子固酶基电极可以实现酶-电极间的直接电子迁移而且对葡萄糖和氧气具有良好的催化性能(催化反应起始电位分别为-0.03和0.96 V, 底物转化频率分别是1.3和0.5 s-1), 其催化性能的重现性、长期使用性能、酸碱耐受性和热稳定性良好, 随着自组装固酶层数的增加, 催化性能随之增强直至达到极限催化电流;电池性能测试结果表明4-巯基苯甲酸功能化纳米金粒子固酶基燃料电池的开路电压为0.88 V, 最大输出能量密度:864.0 μW·cm-2, 长期使用性能优异(储存3 周后仍可达到最佳能量输出的80%以上)。  相似文献   

8.
熔融碳酸盐燃料电池研究   总被引:5,自引:0,他引:5  
李乃朝  衣宝廉 《电化学》1996,2(1):89-95
以烧结Ni作电极,以LiAlO2无机膜作电池隔膜,组装成了电极而积28cm^2的小型熔融碳酸盐燃料电池,试验了各种工作条件对电池性能的影响,电池经多次启动性能无衰减,放电电流密度100mA/cm^2,电池电压0.95V,放电电流密度125mA/cm^2,电池输出功率114mW/cm^2,燃料气利用率80%,电池能量效率31%。  相似文献   

9.
微生物燃料电池电极材料研究进展   总被引:1,自引:0,他引:1  
次素琴  吴娜  温珍海  李景虹 《电化学》2012,18(3):243-251
微生物燃料电池以微生物为催化剂将化学能直接转化成电能,可用于废水处理并产生电能,是一种极具应用前景的生物电化学技术. 本文综述了近年来微生物燃料电池电极材料的制备、功能修饰及表面构建等的研究进展,着重介绍了炭基纳米材料的微结构与成分对微生物燃料电池性能的影响,并分析了微生物燃料电池电极材料现存的主要问题,以期不久的将来微生物燃料电池能付之实用.  相似文献   

10.
本文以乙醇脱氢酶(ADH)和胆红素氧化酶(BOD)为生物催化剂,以碳纳米管为电极材料,构筑了全酶型乙醇/氧气生物燃料电池. 将乙醇脱氢酶负载于单壁碳纳米管(SWCNT)上,采用亚甲基绿(MG)为NADH的电化学催化剂,实现乙醇的生物电化学催化氧化,制备了生物燃料电池ADH/MG/SWCNT/GC的电极(阳极). 同时,将胆红素氧化酶固定于单壁碳纳米管上,通过其直接电子转移,实现了氧气的生物电化学催化还原,制得生物燃料电池的BOD/SWCNT/GC阴极. 据此构筑了全酶型的无膜生物燃料电池,在空气饱和40 mmol·L-1乙醇磷酸缓冲溶液中该电池开路电压为0.53 V,最大输出功率密度为11 μW·cm-2. 以商品化伏特酒作为燃料,该生物燃料电池最大输出功率为3.7 μW·cm-2.  相似文献   

11.
Extended lifetime biofuel cells   总被引:1,自引:0,他引:1  
Over the last 40 years, researchers have been studying and improving enzymatic biofuel cells, but until the last five years, the technology was plagued by short active lifetimes (typically 8 hours to 7 days) that prohibited the commercial use of this technology. This tutorial review introduces the topic of enzymatic biofuel cells and discusses the recent work done to stabilize and immobilize enzymes at bioanodes and biocathodes of biofuel cells. This review covers a wide variety of fuel systems from sugar to alcohols and covers both direct electron transfer (DET) systems and mediated electron transfer (MET) systems.  相似文献   

12.
Bio-logic-al: an autonomous, integrated "sense-act-treat" system that is based on an enzymatic biofuel cell has been developed. The system couples a biocomputing logic-detection method with a drug-release system to provide a logic-activated therapeutic intervention in response to a simulated abnormal physiological state, without the need for an external power source, control electronics, or microelectromechanical actuators.  相似文献   

13.
Metal organic frameworks (MOFs) with their high pore volumes and chemically-diverse pore environments have emerged as components of catalytic electrodes for biosensors, biofuel cells, and bioreactors. MOFs are widely exploited for gas capture, separations, and catalysis, but their integration at electrodes with biocatalysts for (bio)electrocatalysis is a niche topic that remains largely unexplored. This review focuses on recent advances in MOF and MOF-derived carbon electrodes for bioelectrochemical applications. A range of MOF materials and their integration into devices with enzymes and microbes are reported. Key properties and performance characteristics are considered and opportunities facing MOFs for (bio)electrochemical applications are discussed.  相似文献   

14.
A basic scheme of the use of the Gluconobacter oxydans bacteria cells as a biocatalyst at an anode of a biofuel cell with air-based cathode is raised up. The anode and cathode of the cell are made of graphite; 2,6-dichlorophenolindophenol serves as an electron transport mediator; and glucose is the substrate to be oxidized. The open-circuit voltage is 55 mV, for the bacteria cell, the mediator, and glucose concentrations of 3 mg/ml (raw weight), 34 mM, and 10 mM, respectively. The voltage and current of the biofuel cell loaded with an external resistance of 10 kohm are 5.6 mV and 0.56 mA. The cell’s internal resistance is 88 kohm.  相似文献   

15.
An “abiotic” biofuel cell composed of catalytic electrodes modified with inorganic nanoparticles (NPs) deposited on carbon black (CB) was used to activate a wireless information transmission system. The cathode and anode were made of carbon paper modified with Pt‐NPs/CB and buckypaper modified with Au80Pt20‐NPs/CB, respectively. The cathode/anode pair was implanted in orange pulp extracting power from its content (glucose and fructose in the juice). The open circuit voltage, Voc, short circuit current density, jsc, and maximum power produced by the biofuel cell, Pmax, were found as 0.36 V, 1.3 mA cm?2 and 182 µW, respectively. The voltage produced by the biofuel cell was amplified with an energy harvesting circuit and applied to a wireless transmitter. The present study continues the research line where different implantable biofuel cells are used for activation of electronic devices.  相似文献   

16.
Biofuels, such as bio‐ethanol, bio‐butanol, and biodiesel, are of increasing interest as alternatives to petroleum‐based transportation fuels because they offer the long‐term promise of fuel‐source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel‐delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next‐generation alternative fuels.  相似文献   

17.
Enzymatic biofuel cells (EBFCs) for direct biochemical energy conversion are a promising candidate for addressing the growing power demands for low-power implantable and wearable devices. EBFCs comprise electrodes modified with biorecognition elements that produce bioelectrical energy from the redox activity of an organic fuel (sugars, alcohols) and an oxidant at the surface of the anode and cathode. The biorecognition layers are carefully constructed using enzymes immobilized on the electrode via surface modification strategies to increase the enzyme loading and hence the turnover rate. In addition, a polymer encapsulation membrane is implemented to create a protective microenvironment for the enzymes to enhance the biofuel cell's productivity. In this brief review, the different methods carried out to improve the stability of the EBFC system are discussed. New trends and key challenges are presented to illustrate the importance of the various materials implemented in extending the operational lifetime of EBFCs.  相似文献   

18.
Biocatalytic electrodes made of buckypaper were modified with PQQ‐dependent glucose dehydrogenase on the anode and with laccase on the cathode. The enzyme modified electrodes were assembled in a biofuel cell which was first characterized in human serum solution and then the electrodes were placed onto exposed rat cremaster tissue. Glucose and oxygen dissolved in blood were used as the fuel and oxidizer, respectively, for the implanted biofuel cell operation. The steady‐state open circuitry voltage of 140±30 mV and short circuitry current of 10±3 µA (current density ca. 5 µA cm?2 based on the geometrical electrode area of 2 cm2) were achieved in the in vivo operating biofuel cell. Future applications of implanted biofuel cells for powering of biomedical and sensor devices are discussed.  相似文献   

19.
Although mitochondria have long been considered the powerhouse of the living cell, it is only recently that we have been able to employ these organelles for electrocatalysis in electrochemical energy conversion devices. The concept of using biological entities for energy conversion, commonly referred to as a biofuel cell, has been researched for nearly a century, but until recently the biological entities were limited to microbes or isolated enzymes. However, from the perspectives of efficient energy conversion and high volumetric catalytic activity, mitochondria may be a possible compromise between the efficiency of microbial biofuel cells and the high volumetric catalytic activity of enzymatic biofuel cells. This perspective focuses on comparing mitochondrial biofuel cells to other types of biofuel cells, as well as studying the fuel diversity that can be employed with mitochondrial biofuel cells. Pyruvate and fatty acids have previously been studied as fuels, but this perspective shows evidence that amino acids can be employed as fuels as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号