首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of diphenyl-β-diketiminatoaluminum dihydride, LAlH2 [1, L = {H5C6–NC(Me)}2CH] with neopentyl- or trimethylsilylmethyllithium afforded the corresponding alkylderivatives LAlH(R) [R = CH2–SiMe3 (2), CH2–CMe3 (3)] by the precipitation of lithium hydride. Deprotonation of a methyl group instead of salt elimination occurred by the similar reaction of the more basic alkyllithium compound LiC(SiMe3)3. The reactions of the hydrides 13 with tert-butyl hydrogenperoxide did not yield the expected peroxo derivatives, instead the dialuminoxanes LAl(R)–O–Al(R)L [R = OCMe3 (5), CH2SiMe3 (6), CH2CMe3 (7)] were isolated in high yields. Their Al–O–Al bridges deviated from linearity and had Al–O–Al bond angles of about 155° on average.  相似文献   

2.
The reaction of the tripod ligand hydrotris(N-(2-methylphenyl)-2-thioimidazol-1-yl)borate, Tt with zinc(II) chloride yielded the chloro complex [TtZn–Cl] 1. The hydrolytic reactivity of its hydroxo complex [TtZn–(μ-OH)ZnTt]Cl 2 towards p-nitrophenyl acetate was hampered due to the formation of the stable phenolate complex [TtZn–O–Ar–p-NO2] 3 as a product inhibition. The X-ray structure analysis of complex 3 was determined and showed that its Zn[S3O] coordination sphere includes three thione donors from the ligand Tt and one oxygen donor from the hydrolysed product p-nitrophenolate in an ideally tetrahedral arrangement around the zinc(II) centre.  相似文献   

3.
《Comptes Rendus Chimie》2014,17(1):81-90
The reaction of 1,2-bis(diphenylphosphino)ethane (dppe) with various ketones in acetone produces the new phosphonium salts [RC(O)CH2PPh2(CH2)2PPh2CH2C(O)R]X2 (R = 2-naphtyl, X = Br (1); R = 2,4-dichlorophenyl, X = Cl (2); R = 3-nitrophenyl, X = Br (3)). Further treatment with a base gives the symmetrical phosphorus ylides, RC(O)CHPPh2(CH2)2PPh2CHC(O)R (R = 2-naphtyl (4), 2,4-dichlorophenyl (5), 3-nitrophenyl (6)). These ligands react with Pd(II) chloride to form C,C-chelated complexes with the composition [RC(O)CHPPh2(CH2)2PPh2CHC(O)R]PdCl2, where R = 2-naphtyl (7), 2,4-dichlorophenyl (8), 3-nitrophenyl (9). These compounds have been characterized by elemental analysis and spectroscopic methods and consist of seven-membered rings formed by the coordination of the ligands through the two ylidic carbon atoms to the metal center. The structure of compound 5 has been characterized crystallographically. The palladium complex 9 is employed in the Suzuki cross-coupling reaction between phenylboronic acid and several aryl halides. It was found to be a competent catalyst for a variety of substrates to afford the coupled products in high yields using DMF as a solvent. The biaryl products were obtained under aerobic conditions in short reaction times with a lower loading of the catalyst (0.001 mol%).  相似文献   

4.
A novel zinc diphosphonate, Zn[HO3PCH2(C6H4)CH2PO3H] (1) was synthesized from tetraethyl para-xylylenediphosphonate, Et2O3PCH2C6H4CH2PO3Et2, and Zn (AcO)2·2H2O under solvothermal conditions. The structure of compound 1 was determined by single-crystal X-ray diffraction, which reveals that the structure crystallizes in the monoclinic space group C2/c (No. 15), with a = 22.4844(19) Å, b = 6.4361(5) Å, c = 8.1194(7) Å, β = 102.595(2)°, V = 1146.70(16) Å3, T = 298(2) K, Z = 8. The novel three-dimensional (3D) construction is simply built up from linear inorganic chains of corner-sharing four-rings of tetrahedral [ZnO4] and [PO3C] which connected adjacent chains by the organophosphorus ligand para-xylylenediphosphonate. The framework has 10 Å × 4 Å (containing the van der Waals radii of atoms) channels running along the b-axis.  相似文献   

5.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   

6.
Two new nickel(II) [Ni(L)2] and copper(II) [Cu(L)2] complexes have been synthesized with bidentate NO donor Schiff base ligand (2-{(Z)-[furan-2-ylmethyl]imino]methyl}-6-methoxyphenol) (HL) and both complexes Ni(L)2 and Cu(L)2 have been characterized by elemental analyses, IR, UV–vis, 1H, 13C NMR, mass spectroscopy and room temperature magnetic susceptibility measurement. The tautomeric equilibria (phenol-imine, O–H?N and keto-amine, O?H–N forms) have been systemetically studied by using UV–vis absorption spectra for the ligand HL. The UV–vis spectra of this ligand HL were recorded and commented in polar, non-polar, acidic and basic media. The crystal structures of these complexes have also been determined by using X-ray crystallographic techniques. The complexes Ni(L)2 and Cu(L)2 crystallize in the monoclinic space group P21/n and P21/c with unit cell parameters: a = 10.4552(3) Å and 12.1667(4) Å, b = 8.0121(3) Å and 10.4792(3) Å, c = 13.9625(4) Å and 129.6616(3)Å, V = 1155.22(6) Å3 and 1155.22(6) Å3, Dx = 1.493 and 1.476 g cm?3 and Z = 2 and 2, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares to a find R = 0.0377 and 0.0336 of for 2340 and 2402 observed reflections, respectively.  相似文献   

7.
The RuC bond of the bis(iminophosphorano)methandiide-based ruthenium(II) carbene complexes [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(O)(OR)2}Ph2]2)] (R = Et (1), Ph (2)) undergoes a C–C coupling process with isocyanides to afford ketenimine derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNR′)[P{NP(O)(OR)2}Ph2]2)] (R = Et, R′ = Bz (3a), 2,6-C6H3Me2 (3b), Cy (3c); R = Ph, R′ = Bz (4a), 2,6-C6H3Me2 (4b), Cy (4c)). Compounds 34ac represent the first examples of ketenimine–ruthenium complexes reported to date. Protonation of 34a with HBF4 · Et2O takes place selectively at the ketenimine nitrogen atom yielding the cationic derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNHBz)[P{NP(O)(OR)2}Ph2]2)][BF4] (R = Et (5a), Ph (6a)).  相似文献   

8.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

9.
Oxidative demetalation of Fischer ferrocenyl ethoxy carbene complexes (1ac, M = Cr, Mo, W) and new Fischer ferrocenyl R-amino carbene complexes [25 (ac), 1115 (ac), and 2122 (ac); M = Cr, Mo, W; R = H, CH3, C2H5, C3H7, (CH2)2OH, (CH2)3OH, (CH2)2(OMe)2, (CH2)3N(Me)2, CH2CHCH2, (CH2)2OSi(CH3)3, (CH2)3OSi(CH3)3] with elemental sulfur–NaBH4 were carried out under mild conditions, obtaining O-ethyl ferrocenecarbothioate (6) and novel ferrocenyl thioamides (710 and 1620) in excellent yields.  相似文献   

10.
《Polyhedron》2007,26(5):981-988
New π-conjugated butadiynyl ligand FcC(CH3)2Fc′–CC–CC–Ph (L1) has been synthesized and its reaction with Co2(CO)8 has been studied. New clusters [FcC(CH3)2Fc′–CC–CC–Ph][Co2(CO)6]n [(1): n = 1; (2): n = 2] and [Fc–CC–CC–Ph][Co2(CO)6]n [(3): n =  1; (4): n = 2] were obtained by the reaction of ligands FcC(CH3)2Fc′–CC–CC–Ph (L1) and Fc–CC–CC–Ph (L2) with Co2(CO)8 respectively and the composition and structure of the clusters and ligands have been characterized by elemental analysis, FTIR, 1H and 13C NMR and MS. The crystal structures of compounds L1, L2, 2 and 4 have been determined by X-ray single crystal analysis.  相似文献   

11.
Reaction of Zn(NO3)2·6H2O with p-aminobenzoic acid in a 1:2 molar ratio under ethanol medium at room temperature affords a new three dimensional (3D) coordination polymer [Zn(PABA)2]·H2O (1) (PABA = p-aminobenzoic acid). Single-crystal X-ray diffraction reveals that 1 crystallizes in the orthorhombic system, space group P212121, a = 7.614(2), b = 11.133(3), c = 16.869(4). 1 adopts a 3D open framework with H2O molecules in the cavities. PABA, acting as bridging ligand as well as coordinating ligand, adopts a different coordination mode to bridge Zn atoms and form the 3D supramolecular structure which is further stabilized by N–H?O, O–H?O hydrogen bonding and π–π stacking interactions. Powder second-harmonic generation (SHG) efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the SHG efficiency of 1 is equivalent to KDP crystal. The present work also demonstrates that the framework of 1 is retained after removal of the guest H2O molecules, and the H2O molecules can be reintroduced into the framework, indicating that this complex may also be used to generate porous materials.  相似文献   

12.
Four oxovanadium and one dioxovanadium complex with 2-hydroxyacetophenone N(4)-phenylthiosemicarbazone (H2L) which are represented as [VOLphen]·2H2O (1), [VOLbipy] (2), [VOLdmbipy] (3), [VOL]2 (4) and [VO2HL]·CH3OH (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes 14 the ligand coordinates through phenolic oxygen, azomethine nitrogen and thiolate sulfur. But in complex [VO2HL]·CH3OH, coordination takes place in thione form instead of thiolate sulfur. All the complexes except [VO2HL]·CH3OH are EPR active due to the presence of an unpaired electron. In frozen DMF at 77 K, all the oxovanadium(IV) complexes show axial anisotropy with two sets of eight line patterns.  相似文献   

13.
《Polyhedron》2001,20(15-16):2063-2072
Two novel complexes of Zn(II) chromate with 2,2′-bipyridine have been synthesised: [Zn(bpy)3]CrO4·7.5H2O (1) and catena-(μ-CrO4-O,O′)[Zn(bpy)(H2O)2]·2H2O (2). Complex 1 has been characterised by a structural method. The [Zn(bpy)3]CrO4·7.5H2O crystals have a monoclinic symmetry with space group C2/c and eight chemical units. The chromate ion is not coordinated to the zinc(II) ion. The O(3) and O(4) atoms of CrO42− and O(8) of the water molecule statistically occupy their position with k=0.5, which means that the chromate ions execute reorientational motion between two equilibrium arrangements with equal probability. 4 K electronic spectra (1) revealed the vibrational fine structure in ν3(F2)=820 cm−1 for the spin-forbidden 1A13T1 transition. The pure electronic 0–0 transition in 1A11T1 was found at 20 270 cm−1. In complex 2 the broad low intensity band at ca. 16 800 cm−1 has been assigned to a forbidden ZnOCr transition in the bridge.  相似文献   

14.
1,3-Dimethyl-2-[4-chloro-styryl]-benzimidazolium iodide (1) was synthesized and characterized by X-ray diffraction, 1H NMR, MS, IR, UV–vis spectra and elemental analysis. The crystals are monoclinic, space group P21/c, with a = 12.507(3) Å, b = 7.3259(19) Å, c = 36.705(9) Å, V = 3358.9(15) Å3, and Z = 4 (at 296(2) K). Crystal stacking scheme indicates the face-to-face π?π aromatic stacking interactions. Molecular geometries, frequencies, IR, 1H NMR and UV–vis were calculated at DFT/TD-DFT level using two hybrid exchange–correlation functionals, B3LYP and PBE1PBE. The stability of the molecule arising from hyperconjugative interaction and charge delocalization had been analyzed using natural bond orbital (NBO) analysis. These calculations on (1) provide deep insight into its electronic structure and properties.  相似文献   

15.
A new complex of oxovanadium(IV), V2O2[(HB(pz)3)2(pyrro)2 (1) and a dimer-dithio carboxyl compound (C5H8NS2)2 (2) have been synthesized by the reaction of VOSO4·nH2O with NaHB(pz)3 and pyrrolidine dithio carboxylic acid ammonium salt. They were characterized by element analysis, IR spectra, UV–vis spectra and X-ray diffraction. Structural analyses of 1 and 2 gave the following parameters: 1, triclinic, P-1, a = 7.732(4) Å, b = 14.285(8) Å, c = 17.802(9) Å, α = 101.314(8)°, β = 92.682(9)°, γ = 92.228(9)°, V = 1923.6(18) Å3, and Z = 4; 2, monoclinic, C2/c, a = 13.857(2) Å, b = 10.4213(18) Å, c = 9.436(2) Å, β = 97.099(2), V = 1352.1(4) Å3, and Z = 4. In complex 1, vanadium atom adopts a distorted tetragonal bipyramid structure, which is typical for oxovanadium(IV) complexes. Compound 2 is a dimer-dithio carboxyl compound with S–S bond. In addition, thermal analysis was performed for analyzing the stabilization of the complexes.  相似文献   

16.
The structure of the complex of dimethylphenyl betaine (DMPB) with dichloroacetic acid (DCA) (1) has been investigated by X-ray diffraction, FTIR and Raman spectroscopy, and B3LYP/6-311 + + G(d,p) calculations. The crystal is monoclinic, space group P21. The acid is connected with betaine through the OH⋯O hydrogen bond of 2.480(2) Å. In the optimized structure the short, asymmetric O⋯O distance is 2.491 Å. FTIR spectrum shows a broad absorption in the 1500–400 cm−1 region characteristic of very short OH⋯O hydrogen bond caused by Fermi resonance between νOH and overtones of δOH and γOH. In the Raman spectrum this broad absorption is not observed. The potential energy distributions (PED) were used for the assignments of IR and Raman frequencies in the experimental and calculated spectra. The FTIR and Raman spectra of the crystal complex are consistent with the X-ray results.  相似文献   

17.
Arylselenium(II) derivatives of dithiophosphorus ligands of type ArSeSP(S)R2 [Ar = Ph, R = Ph (1), OPri (2); 2-[MeN(CH2CH2)2NCH2]C6H4, R = Ph (3), OPri (4); 2-[O(CH2CH2)2NCH2]C6H4, R = OPri (6)] were prepared by redistribution reactions between Ar2Se2 and [R2P(S)S]2. The derivative [2-{O(CH2CH2)2NCH2}C6H4]SeSP(S)Ph2 (5) was obtained by the salt metathesis reaction between [2-{O(CH2CH2)2NCH2}C6H4]SeCl and NH4S2PPh2. The compounds were investigated by multinuclear (1H, 13C, 31P, 77Se) NMR and infrared spectroscopy. The crystal and molecular structures of 1, 3, 4 and 6 were determined by single-crystal X-ray diffraction. In compounds 3, 4 and 6 the N(1) atom is intramolecularly coordinated to the selenium center, resulting in a T-shaped geometry (hypervalent 10-Se-3 species). The dithiophosphorus ligands act as anisobidentate in 1 and monodentate in 3, 4 and 6. Supramolecular architectures based on intermolecular S?H and N?H contacts between molecular units are formed in the hypervalent derivatives 3 and 4, while in the compounds 1 and 6 the molecules are associated into polymeric chains through either Se?S or O?H contacts, with no further inter-chain interactions.  相似文献   

18.
1H-Siladigermirene R4SiGe2 (2a) and 1H-trigermirene R4Ge3 (2b) (R = SiMetBu2) with a GeGe double bond were synthesized by the reaction of tetrachlorodigermane RGeCl2–GeCl2R with dilithiosilane R2SiLi2 and dilithiogermane R2GeLi2, respectively. The skeletal GeGe double bond of 2a is trans-bent (51.0(2)°) with a bond distance of 2.2429(6) Å. The reaction of both 2a and 2b with CH2Cl2 resulted in the formation of unusual four-membered ring compounds 5a and 5b as a result of a ring expansion reaction. 1H-Trisilirene 7a and 3H-disilagermirene 7b with an SiSi double bond also smoothly reacted with CH2Cl2 to yield the four-membered ring systems 8a and 8b, respectively.  相似文献   

19.
The reaction of Cu(ClO4)2·6H2O with dimethylglyoxime (H2dmg) in a 1:1 mole ratio in aqueous methanol at room temperature affords the dinuclear complex [Cu2(μ-Hdmg)4] (1). Reaction of 1 with [Cu(bpy)(H2O)2](ClO4)2 (bpy = 2,2′-bipyridine) in a 1:1 mole ratio in aqueous methanol at room temperature yields the tetranuclear complex [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2](ClO4)2 (2). The direct reaction of Cu(ClO4)2·6H2O with H2dmg and bpy in a 2:2:1 mole ratio in aqueous methanol at room temperature also yields 2 quantitatively. The complexes 1 and 2 were structurally characterized by X-ray crystallography. Unlike the binding in Ni/Co-dmg, two different types of N?O bridging modes during the oxime based metallacycle formation and stacking of square planar units have been identified in these complexes. The neutral dinuclear complex 1 has CuN4O coordination spheres and complex 2 consists of a dicationic [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2]2+ unit and two uncoordinated ClO4? anions having CuN4O and CuN2O3 coordination spheres. The two copper(II) ions are at a distance of 3.846(8) Å in 1 for the trans out of plane link and at 3.419(10) and 3.684(10) Å in 2 for the trans out of plane and cis in plane arrangements, respectively. The average Cu–Noxime distances are 1.953 and 1.935 Å, respectively. The average basal and apical Cu?Ooxime distances are 1.945, 2.295 and 2.429 Å. The UV–Vis spectra of 2 is similar to the spectrum of the reaction mixture of 1 and [Cu(bpy)(H2O)2]2+. Variable temperature magnetic properties measurement shows that the interaction between the paramagnetic copper centers in complex 1 is antiferromagnetic in nature. The EPR spectra of frozen solution of the complexes at 77 K consist of axially symmetric fine-structure transitions (ΔMS = 1) and half-field signals (ΔMS = 2) at ca. 1600 G, suggesting the presence of appreciable Cu–Cu interactions.  相似文献   

20.
《Solid State Sciences》2007,9(6):491-495
A novel zinc(II) phthalate compound, [Zn{C6H4(COO)2}2]n2−[NH3–(CH2)3–NH3]n2+, 1 which contains four different phthalate moieties coordinated to the Zn(II) ion through one each of their carboxylate moieties in a η1-form and each phthalate moiety acting as a bridging unit with an overall tetrahedral geometry around the metal ion has been prepared and structurally characterized. The structure is unique in the sense that the dianionic moieties [Zn{C6H4(COO)2}2]2− form an infinite one-dimensional network composed of 14-membered cyclic units interconnected in a way that they are disposed alternatively in almost perpendicular planes. The dicationic [NH3–(CH2)3–NH3]2+ units are seen to hold these one-dimensional chains by strong coulombic and hydrogen bond interaction, resulting in an infinite two-dimensional layered structure of 1. The compound is thermally stable up to 250 °C. Above this temperature it loses one equivalent of phthalate moiety along with the diammonium unit to yield Zn(II) phthalate. The thermodynamic and kinetic parameters associated with this process could be evaluated using Coats–Redfern equation which shows the activation energy Ea for the process as 305.0 kJ mol−1, the frequency factor A as 1.49 × 1011 s−1 and the entropy change ΔS as −35.90 JK−1 mol−1. Fluorescent emission properties of 1 was studied by exciting the compound at 380 nm and also at 322 nm which were found to be the two λmax corresponding to absorptions of the molecule. Interestingly, the compound gave same type of emission spectra showing a maximum around 444 nm on exciting at these two different wavelengths, indicating that the molecule comes to the first excited state from the higher excited state by a fast non-radiative process before it exhibits singlet emission to come to the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号