首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
以商业三氧化钨粉末做为钨源,通过合成WOx-EDA(EDA=乙二胺)有机-无机杂化纳米带为前驱物,再加盐酸酸化,迅速得到中间产物正交型钨酸单晶纳米片。再在空气气氛下,将中间产物在管式炉中煅烧2h,最终得到单斜型三氧化钨单晶纳米片。一系列对比实验的结果表明,在由杂化纳米带转变成钨酸纳米片时,反应温度、反应时间、酸化浓度等实验参数对产物的结构和形貌有着很大的影响。通过计算,制得的三氧化钨纳米片带隙为2.48eV。对比于商业三氧化钨粉末,三氧化钨纳米片在可见光降解罗丹明B(RhB)中表现出更优越的性能。  相似文献   

2.
Tungsten oxide hydrate (WO3·H2O) nanoplates and flower-like assemblies were successfully synthesized via a simple aqueous method. The effects of reaction parameters in solution on the preparation were studied. Nanoplates and nanoflowers can be selectively prepared by changing the amount of H2C2O4. In-situ assembly of nanoplates to nanoflowers was also proposed for the formation of assembled nanostructures. In addition, the reaction time and temperature have important effects on the sizes of the as-obtained samples. Crystal structure, morphology, and composition of final nanostructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical properties of the synthesized samples and the growth mechanism were studied by UV-vis detection. Degradation experiments of Rhodamine B (RhB) were also performed on samples of nanoplates and nanoflowers under visible light illumination. Nanoflower sample exhibited preferable photocatalytic property to nanoplate sample.  相似文献   

3.
王超  许友  张兵 《无机化学学报》2014,30(7):1575-1581
以商业三氧化钨粉末做为钨源,通过合成WOx-EDA(EDA=乙二胺)无机-有机杂化纳米带为前驱物,再加盐酸酸化,迅速得到中间产物正交型钨酸单晶纳米片。再在空气气氛下,将中间产物在管式炉中煅烧2 h,最终得到单斜型三氧化钨单晶纳米片。一系列对比实验的结果表明,在由杂化纳米带转变成钨酸纳米片时,反应温度、反应时间、酸化浓度等实验参数对产物的结构和形貌有着很大的影响。通过计算,制得的三氧化钨纳米片带隙为2.48 eV。对比于商业三氧化钨粉末,三氧化钨纳米片在可见光降解罗丹明B(RhB)中表现出更优越的性能。  相似文献   

4.
CeO2 nanoparticles have been proven to be competent photocatalysts for environmental applications because of their strong redox ability, nontoxicity, long-term stability, and low cost. We have synthesized CeO2 nanoparticles via solution combustion method using ceric ammonium nitrate as an oxidizer and ethylenediaminetetraacetic acid (EDTA) as fuel at 450 °C. These nanoparticles exhibit good photocatalytic degradation and antibacterial activity. The obtained product was characterized by various techniques. X-ray diffraction data confirms a cerianite structure: a cubic phase CeO2 having crystallite size of 35 nm. The infrared spectrum shows a strong band below 700 cm−1 due to the Ce−O−Ce stretching vibrations. The UV/Vis spectrum shows maximum absorption at 302 nm. The photoluminescence spectrum shows characteristic peaks of CeO2 nanoparticles. Scanning electron microscopy (SEM) images clearly show the presence of a porous network with a lot of voids. From transmission electron microscopy (TEM) images, it is clear that the particles are almost spherical, and the average size of the nanoparticles is found to be 42 nm. CeO2 nanoparticles exhibit photocatalytic activity against trypan blue at pH 10 in UV light, and the reaction follows pseudo first-order kinetics. Finally, CeO2 nanoparticles also reduce CrVI to CrIII and show antibacterial activity against Pseudomonas aeruginosa.  相似文献   

5.
Despite remarkable progress in photoconversion efficiency, the toxicity of lead-based hybrid perovskites remains an important issue hindering their applications in consumer optoelectronic devices, such as solar cells, LED displays, and photodetectors. For that reason, lead-free metal halide complexes have attracted great attention as alternative optoelectronic materials. In this work, we demonstrate that reactions of two aromatic diamines with iodine in hydroiodic acid produced phenylenediammonium (PDA) and N,N-dimethyl-phenylenediammonium (DMPDA) triiodides, PDA(I3)2⋅2H2O and DMPDA(I3)I, respectively. If the source of bismuth was added, they were converted into previously reported PDA(BiI4)2⋅I2 and new (DMPDA)2(BiI6)(I3)⋅2H2O, having band gaps of 1.45 and 1.7 eV, respectively, which are in the optimal range for efficient solar light absorbers. All four compounds presented organic–inorganic hybrids, whose supramolecular structures were based on a variety of intermolecular forces, including (N)H⋅⋅⋅I and (N)H⋅⋅⋅O hydrogen bonds as well as I⋅⋅⋅I secondary and weak interactions. Details of their molecular and supramolecular structures are discussed based on single-crystal X-ray diffraction data, thermal analysis, and Raman and optical spectroscopy.  相似文献   

6.
Affibody molecules are small scaffold-based affinity proteins with promising properties as probes for radionuclide-based molecular imaging. However, a high reabsorption of radiolabeled Affibody molecules in kidneys is an issue. We have shown that the use of 125I-3-iodo-((4-hydroxyphenyl)ethyl)maleimide (IHPEM) for site-specific labeling of cysteine-containing Affibody molecules provides high tumor uptake but low radioactivity retention in kidneys. We hypothesized that the use of 4-iodophenethylmaleimide (IPEM) would further reduce renal retention of radioactivity because of higher lipophilicity of radiometabolites. An anti-human epidermal growth factor receptor type 2 (HER2) Affibody molecule (ZHER2:2395) was labeled using 125I-IPEM with an overall yield of 45±3 %. 125I-IPEM-ZHER2:2395 bound specifically to HER2-expressing human ovarian carcinoma cells (SKOV-3 cell line). In NMRI mice, the renal uptake of 125I-IPEM-ZHER2:2395 (24±2 and 5.7±0.3 % IA g−1at 1 and 4 h after injection, respectively) was significantly lower than uptake of 125I-IHPEM-ZHER2:2395 (50±8 and 12±2 % IA g−1at 1 and 4 h after injection, respectively). In conclusion, the use of a more lipophilic linker for the radioiodination of Affibody molecules reduces renal radioactivity.  相似文献   

7.
Tetragonal CeVO4 was prepared through hydrothermal treatment and sonication method with the same precursor in the absence of any catalysts or templates, and the products were characterized by XRD, TEM and Raman. It is found that microrods, nanoparticles, nanorods and nanoplates have been obtained. The bigger nanorods produced through hydrothermal treatment have average diameters of 15–25 nm and lengths of 20–60 nm. The smaller nanorods prepared through ultrasound treatment have average diameters of 6–12 nm and lengths of 10–18 nm. Uniform nanoplates have been produced. The nanoplates produced through hydrothermal method are composed of CeVO4 and CeO2. The mechanism of shape changing has been discussed. And the existing vanadium which is sensitive to the pH value of synthesis solution may be a key factor for the resulted sizes and shapes of the obtained nanocrystals. The samples prepared through hydrothermal treatment and sonication method were used as the catalysts for the combustion of trichloroethylene to test their catalytic activity.  相似文献   

8.
Our purpose is to understand the mechanism through which pH affects the competition between base-induced elimination and substitution. To this end, we have quantum chemically investigated the competition between elimination and substitution pathways in H2O+C2H5OH2+ and OH+C2H5OH, that is, two related model systems that represent, in a generic manner, the same reaction under acidic and basic conditions, respectively. We find that substitution is favored in the acidic case while elimination prevails under basic conditions. Activation-strain analyses of the reaction profiles reveal that the switch in preferred reactivity from substitution to elimination, if one goes from acidic to basic catalysis, is related to (1) the higher basicity of the deprotonated base, and (2) the change in character of the substrates LUMO from Cβ−H bonding in C2H5OH2+ to Cβ−H antibonding in C2H5OH.  相似文献   

9.
The need for clean, renewable energy has fostered research into photovoltaic alternatives to silicon solar cells. Pigment–protein complexes in green plants convert light energy into chemical potential using redox processes that produce molecular oxygen. Here, we report the first use of spinach protein photosystem II (PSII) core complex in lipid films in photoelectrochemical devices. Photocurrents were generated from PSII in a ∼2 μm biomimetic dimyristoylphosphatidylcholine (DMPC) film on a pyrolytic graphite (PG) anode with PSII embedded in multiple lipid bilayers. The photocurrent was ∼20 μA cm−2 under light intensity 40 mW cm−2. The PSII–DMPC anode was used in a photobiofuel cell with a platinum black mesh cathode in perchloric acid solution to give an output voltage of 0.6 V and a maximum output power of 14 μW cm−2. Part of this large output is related to a five-unit anode–cathode pH gradient. With catholytes at higher pH or no perchlorate, or using an MnO2 oxygen-reduction cathode, the power output was smaller. The results described raise the possibility of using PSII–DMPC films in small portable power conversion devices.  相似文献   

10.
The aim of this study is to describe and compare the supramolecular interactions, in the solid state, of chloro-, bromo-, and iodobenzothiophene diols. The compounds were obtained through organo-catalyzed reactions starting from 3-substituted halobenzothiophene carbaldehydes. Energies of the noncovalent interactions were obtained by density functional theory calculations. Bond distances and angles were found to be in accordance with those determined by X-ray structure analysis. anti-Bromobenzothiophene derivatives showed strong halogen⋅⋅⋅π interactions between bromine and the heterocyclic phenyl ring, corresponding to an energy of 7.5 kcal mol−1. syn-Bromo and syn-iodo derivatives appeared to be isostructural, showing X⋅⋅⋅O (carbonyl) interactions, π stacking, and formation of extended hydrogen bonding networks. In contrast, the chloro derivatives displayed no halogen bonding interactions.  相似文献   

11.
Shiga-toxin-producing Escherichia coli (STEC) is an important pathogen associated to food-borne infection in humans; strains of E. coli O181, isolated from human cases of diarrhea, have been classified as belonging to this pathotype. Herein, the structure of the O-antigen polysaccharide (PS) from E. coli O181 has been investigated. The sugar analysis showed quinovosamine (QuiN), glucosamine (GlcN), galactosamine (GalN), and glucose (Glc) as major components. Analysis of the high-resolution mass spectrum of the oligosaccharide (OS), obtained by dephosphorylation of the O-deacetylated PS with aqueous 48 % hydrofluoric acid, revealed a pentasaccharide composed of two QuiNAc, one GlcNAc, one GalNAc, and one Glc residue. The 1H and 13C NMR chemical shift assignments of the OS were carried out using 1 D and 2 D NMR experiments, and the OS was sequenced using a combination of tandem mass spectrometry (MS/MS) data and NMR 13C NMR glycosylation shifts. The structure of the native PS was determined using NMR spectroscopy, and it consists of branched pentasaccharide repeating units joined by phosphodiester linkages: →4)[α-l-QuipNAc-(1→3)]-α-d-GalpNAc6Ac-(1→6)-α-d-Glcp-(1→P-4)-α-l-QuipNAc-(1→3)-β-d-GlcpNAc-(1→; the O-acetyl groups represent 0.4 equivalents per repeating unit. Both the OS and PSs exhibit rare conformational behavior since two of the five anomeric proton resonances could only be observed at an elevated temperature.  相似文献   

12.
A series of α-Fe2O3/FeOOH nanostructures with different morphologies have successfully been synthesized based on K4[Fe(CN)6] at 140 °C by a novel hydrothermal method. The morphology and phase of α-Fe2O3/FeOOH can be controlled by adjusting the reaction time. UV–vis absorption spectrum, X-ray powder diffraction, and transmission electron microscopy analyses were used to characterize the resulting products. A detailed, rational mechanism is proposed for the formation of α-Fe2O3/FeOOH nanostructures. The potential applications of the as-synthesized α-Fe2O3/FeOOH nanoparticles with different morphologies on photocatalytic decomposition of salicylic acid were also investigated.  相似文献   

13.
Acceleration by oxygen of the photocatalytic evolution of H2 from an H2O-C2H5OH mixture has been detected. A mechanism of the process is proposed that includes formation of CH3CHOH radicals on a semiconductor photocatalyst, their reaction with O2, and fragmentation of radical products with formation of H atoms, which dehydrogenate C2H5OH, forming additional amounts of H2.Translated from Teoreticheskaya i Éxperimental'naya Khimiya, Vol. 30, No. 1, pp. 30–33, January–February, 1994.We thank the Fundamental Research Fund of Ukraine for its support of this work.  相似文献   

14.
The reaction between basic [(PCP)Pd(H)] (PCP = 2,6-(CH2P(t-C4H9)2)2C6H4) and acidic [LWH(CO)3] (L = Cp (1a), Tp (1b); Cp = η5-cyclopentadienyl, Tp = κ3-hydridotris(pyrazolyl)borate) leads to the formation of bimolecular complexes [LW(CO)2(μ-CO)⋯Pd(PCP)] (4a, 4b), which catalyze amine-borane (Me2NHBH3, tBuNH2BH3) dehydrogenation. The combination of variable-temperature (1H, 31P{1H}, 11B NMR and IR) spectroscopies and computational (ωB97XD/def2-TZVP) studies reveal the formation of an η1-borane complex [(PCP)Pd(Me2NHBH3)]+[LW(CO3)] (5) in the first step, where a BH bond strongly binds palladium and an amine group is hydrogen-bonded to tungsten. The subsequent intracomplex proton transfer is the rate-determining step, followed by an almost barrierless hydride transfer. Bimetallic species 4 are easily regenerated through hydrogen evolution in the reaction between two hydrides.

Bimetallic complexes [LW(CO)2(μ-CO)⋯Pd(PCP)] cooperatively activate amine-boranes for their dehydrogenation via N–H proton tunneling at RDS and H2 evolution from two neutral hydrides.  相似文献   

15.
Catalytic oxidation reactions often suffer from drawbacks such as low yields and poor selectivity. Particularly, selective oxidation of alcohols becomes more difficult when a compound contains more than one oxidizable functional group. In order to deliver a methodology that addresses these issues, herein we report an efficient, aerobic, chemoselective and simplified approach to oxidize a broad range of benzyl and propargyl alcohols containing diverse functional groups to their corresponding aldehydes and ketones in excellent yields under mild reaction conditions. Optimal yields were obtained at room temperature using 1 mmol substrate, 10 mol % copper(I) iodide, 10 mol % 4-dimethylaminopyridine (DMAP), and 1 mol % 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) in acetonitrile, under an oxygen balloon. The catalytic system can be applied even when sensitive and oxidizable groups such as alkynes, amines, and phenols are present; starting materials and products containing such groups were found to be stable under the developed conditions.  相似文献   

16.
Bi2FeVO7 was prepared by a solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi2FeVO7 were studied. The results shows that this compound crystallized in the tetragonal crystal system with space group I4/mmm. Moreover, the band gap of Bi2FeVO7 was estimated to be about 2.22(6) eV. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2FeVO7 as the photocatalyst by ultraviolet light irradiation. Degradation of aqueous methylene blue (MB) dye by photocatalytic way over this compound was further studied under visible light irradiation. Bi2FeVO7 shows higher catalytic activity compared to TiO2 (P-25) for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was realized after visible light irradiation for 170 min with Bi2FeVO7 as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 revealed the continuous mineralization of aqueous MB during the photocatalytic course.  相似文献   

17.
The synthesis of new Schrock–Osborn Rh(i) pre-catalysts with ortho-substituted DPEphos ligands, [Rh(DPEphos-R)(NBD)][BArF4] [R = Me, OMe, iPr; ArF = 3,5-(CF3)2C6H3], is described. Along with the previously reported R = H variant, variable temperature 1H NMR spectroscopic and single-crystal X-ray diffraction studies show that these all have axial (C–H)⋯Rh anagostic interactions relative to the d8 pseudo square planar metal centres, that also result in corresponding downfield chemical shifts. Analysis by NBO, QTAIM and NCI methods shows these to be only very weak C–H⋯Rh bonding interactions, the magnitudes of which do not correlate with the observed chemical shifts. Instead, as informed by Scherer''s approach, it is the topological positioning of the C–H bond with regard to the metal centre that is important. For [Rh(DPEphos–iPr)(NBD)][BArF4] addition of H2 results in a Rh(iii) iPr–C–H activated product, [Rh(κ3,σ-P,O,P-DPEphos-iPr′)(H)][BArF4]. This undergoes H/D exchange with D2 at the iPr groups, reacts with CO or NBD to return Rh(i) products, and reaction with H3B·NMe3/tert-butylethene results in a dehydrogenative borylation to form a complex that shows both a non-classical B–H⋯Rh 3c-2e agostic bond and a C–H⋯Rh anagostic interaction at the same metal centre.

Rh(i) complexes of ortho-substituted DPEphos-R (R = H, Me, OMe, iPr) ligands show anagostic interactions; for R =iPr C–H activation/dehydrogenative borylation forms a product exhibiting both B–H/Rh 3c-2e agostic and C–H/Rh anagostic motifs.  相似文献   

18.
在不同的表面活性剂和硫源的条件下,采用水热法制备了多种形貌的SnS2纳米材料,详细讨论了反应条件对其形貌和性质的影响,并采用X射线衍射(XRD)、扫描电镜(SEM)、和BET比表面积法对制备的样品的物相、形貌和组成进行了表征,通过光催化降解罗丹明B研究了所得样品的光催化性能。结果表明:表面活性剂和硫源对产物的结构和形貌起到了重要的作用。当Sn4+与表面活性剂的物质量的比为1:1时,样品均为纯的六方相SnS2。采用柠檬酸三钠为表面活性剂、硫脲为硫源时制得的SnS2纳米片具有最大的比表面积,同时表现出了最优的光催化性能。  相似文献   

19.
Product detection studies of CN reactions with ethene and propene are conducted at room temperature (4 Torr, 533.3 Pa) using multiplexed time-resolved mass spectrometry with tunable synchrotron photoionization. Photoionization efficiency curves, i.e., the ion signal as a function of photon energy, are used to determine the products and distinguish isomers. Both reactions proceed predominantly via CN addition to the π orbital of the olefin. For CN + ethene, cyanoethene (C2H3CN) is detected as the sole product in agreement with recent studies on this reaction. Multiple products are identified for the CN + propene reaction with 75(±15)% of the detected products in the form of cyanoethene from a CH3 elimination channel and 25(±15)% forming different isomers of C4H5N via H elimination. The C4H5N comprises 57(±15)% 1-cyanopropene, 43(±15)% 2-cyanopropene and <15% 3-cyanopropene. No evidence of direct H abstraction or indirect HCN formation is detected for either reaction. The results have relevance to the molecular weight growth chemistry on Saturn's largest moon Titan, where the formation of small unsaturated nitriles are proposed to be key steps in the early chemical stages of haze formation.  相似文献   

20.
We report herein on an efficient sonochemical method for the synthesis of rare earth orthovanadate nanorods/nanoparticles/nanospindles, (general formula RVO4; R = La, Ce, Nd, Sm, Eu and Gd). TGA, XRD, FTIR, Raman, UV–Vis, and TEM studies are employed for their characterization and for understanding their morphologies. In order to vary the textural properties of the rare earth vanadates, two surfactants, polyethylene glycol (PEG) and amphiphilic triblock copolymer Pluronic P123, are chosen in the preparation. While the sonochemical synthesis in the presence of PEG results in the formation of nearly spherical nanoparticles of LaVO4, CeVO4, SmVO4 and EuVO4, the same technique yields nanorods and nanospindles of NdVO4 and GdVO4, respectively. When P123 is used as the surfactant, the morphologies of RVO4 are strikingly different, and in most cases nanorods and nanospindles are formed. The photocatalytic activities of the rare earth orthovanadate have been evaluated by studying the degradation of methylene blue, and CeVO4 seems to be the best catalyst in the heterogeneous photolysis. The electrocatalytic activity of the vanadates has been examined by studying the hydrogen evolution reaction using a linear sweep voltammogram technique in 1 M of a H2SO4 solution. GdVO4 seems to be the best electrocatalyst. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号