首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
张瑛煜  申光焕  崔琳琳  赵丽 《化学通报》2023,86(12):1467-1474
我国天然药物和中药资源丰富,种类繁多,可作为先导化合物进行修饰以提高可成药性。其中,黄酮类化合物是自然界中一种常见的天然多酚类化合物,在抗肿瘤方面具有其独特的生物活性;对其进行结构修饰与改造,可提高黄酮类化合物的生物利用度和抗肿瘤活性。本文通过查阅并整理近几年国内外的黄酮类化合物的相关文献,对黄酮类化合物的母核位点进行结构修饰与改造所得的101个黄酮类衍生物及其抗肿瘤活性及作用机制进行综述,同时讨论了构效关系,以期为黄酮类衍生物的结构修饰和抗肿瘤研究提供参考和帮助。  相似文献   

2.
Non‐enzymatic posttranslational modifications (nPTMs) affect at least ~30 % of human proteins, but our understanding of their impact on protein structure and function is limited. Studies of nPTMs are difficult because many modifications are not included in common chemical libraries or protein expression systems and should be introduced site‐specifically. Herein, we probed the effect of the nPTM argpyrimidine on the structure and function of human protein Hsp27, which acquires argpyrimidine at residue 188 in vivo. We developed a synthetic approach to an argpyrimidine building block, which we then incorporated at position 188 of Hsp27 through protein semisynthesis. This modification did not affect the protein secondary structure, but perturbed the oligomeric assembly and impaired chaperone activity. Our work demonstrates that protein function can be altered by a single nPTM and opens up a new area of investigation only accessible by methods that allow site‐selective protein modification.  相似文献   

3.
Enzymatic farnesylation of oncogenic forms of Ras proteins is the initial step in a series of posttranslational modifications essential for Ras activity. The modification is catalyzed by the enzyme, protein farnesyltransferase (PFTase), which transfers a farnesyl moiety from farnesyl diphosphate to the protein. We employed capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection to develop a rapid and sensitive method for the determination of PFTase activity in vitro. The limited substrate specificity of PFTase allowed us to use a fluorescently labeled pentapeptide instead of a Ras protein as a substrate for the enzyme; the product of the enzymatic reaction was the farnesylated pentapeptide. The product was separated from the substrate by CE and quantified with LIF detection. Under optimal conditions, the separation was achieved within 10 min with a resolution of 86. The mass and concentration limits of detection for the farnesylated product were 10(-19) mol and 0.28 nM, respectively. By measuring the rate of accumulation of the farnesylated product, we were able to determine the kinetic parameters of the enzymatic reaction. For yeast PFTase as an enzyme and difluorocarboxyfluorescein-labeled GCVIA peptide as a substrate, the values of k(cat) and K(M) were found to be (3.1 +/- 0.3)x10(-3) s(-1) and (12.0 +/- 1.2) nuM, respectively. Our results suggest that CE-LIF can be efficiently used for the determination of enzymatic activity of PFTase in vitro. After minor modifications, the developed method can be also applied to other reactions of enzymatic prenylation of proteins.  相似文献   

4.
A new and unnatural type of phospholipids with the head group attached to the 2-position of the glycerol backbone has been synthesized and shown to be a good substrate for secretory phospholipase A2 (sPLA2). To investigate the unexpected sPLA2 activity, we have compared three different phospholipids by using fluorescence techniques and HPLC, namely: (R)-1,2-dipalmitoyl-glycero-3-phosphocholine (hereafter referred to as 1R), (R)-1-O-hexadecyl-2-palmitoyl-glycero-3-phoshocholine (2R), and (S)-1-O-hexadecyl-3-palmitoyl-glycero-2-phosphocholine (3S). Furthermore, to understand the underlying mechanisms for the observed differences, we have performed molecular dynamics simulations to clarify on a structural level the substrate specificity of sPLA2 toward phospholipid analogues with their head groups in the 2-position of the glycerol backbone. We have studied the lipids above 1R, 2R, and 3S as well as their enantiomers 1S, 2S, and 3R. In the simulations of sPLA2-1S and sPLA2-3R, structural distortion in the binding cleft induced by the phospholipids showed that these are not substrates for sPLA2. In the case of the phospholipids 1R, 2R, and 3S, our simulations revealed that the difference observed experimentally in sPLA2 activity might be caused by reduced access of water molecules to the active site. We have monitored the number of water molecules that enter the active site region for the different sPLA2-phospholipid complexes and found that the probability of a water molecule reaching the correct position such that hydrolysis can occur is reduced for the unnatural lipids. The relative water count follows 1R > 2R > 3S. This is in good agreement with experimental data that indicate the same trend for sPLA2 activity: 1R > 2R > 3S.  相似文献   

5.
Zhang J  Brodbelt JS 《The Analyst》2004,129(12):1227-1233
The main flavonoids in grapefruit juice, naringin and narirutin, were quantified by LC-MS with structural differentiation by LC-MS/MS. After human consumption of grapefruit juice, urine samples were collected for 24 hours and screened for flavonoid metabolites by LC-MS. The metabolite structures (glucuronides, sulfates, and glucuronide sulfates) were then confirmed via their unique fragmentation patterns by LC-MS/MS. To further verify the identity of the common aglycon (naringenin) shared by the metabolites, enzymatic hydrolysis was performed and the resulting products were analyzed. This work demonstrates that LC-MS and LC-MS/MS techniques can be used for fast metabolite screening without extensive sample preparation.  相似文献   

6.
A capillary electrophoretic (CE) system coupled with a diode array UV detector was used for the assay of secretory phospholipase A2 (sPLA2) activity. This method is based on monitoring both the breakdown of substrates and the formation of products simultaneously using micellar electrokinetic chromatographic techniques. Under our developed separation conditions, we analyzed the substrates and products quantitatively, and investigated enzyme activity as a function of reaction time and presence of enzyme activator or inhibitor. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was also utilized to confirm the phosphatidylcholine, a substrate of sPLA2. In order to test the feasibility of the developed method for measurement of enzymatic activity, we compared it to the conventional radioactive assay method for sPLA2. On the basis of our results, the conventional method can be complemented, or even replaced, by this new CE method which possesses the advantages of short analysis time, use of non-radiolabeled and inexpensive substrates, simple measurement of enzymatic activity, and exact quantitation of substrate and product.  相似文献   

7.
The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II) with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS), elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II) ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin-Cu (II) complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytotoxicity activities than free naringin without reducing cell viability.  相似文献   

8.
Flavonoids are an interesting group of natural polyphenolic compounds that exhibit extensive bioactivities such as scavenging free radical, antitumor and antiproliferative effects. The anticancer and antiviral effects of these natural products are attributed to their potential biomedical applications. While flavonoids complexation with DNA is known, their bindings to RNA are not fully investigated. This study was designed to examine the interactions of three flavonoids; morin (Mor), apigenin (Api) and naringin (Nar) with yeast RNA in aqueous solution at physiological conditions, using constant RNA concentration (6.25 mM) and various pigment/RNA (phosphate) ratios of 1/120 to 1/1. FTIR, UV-visible spectroscopic methods were used to determine the ligand binding modes, the binding constant and the stability of RNA in flavonoid-RNA complexes in aqueous solution. Spectroscopic evidence showed major binding of flavonoids to RNA with overall binding constants of K(morin) = 9.150 x 10(3) M(-1), K(apigenin)=4.967 x 10(4) M(-1), and K(naringin)=1.144 x 10(4) M(-1). The affinity of flavonoid-RNA binding is in the order of apigenin>naringin>morin. No biopolymer secondary structural changes were observed upon flavonoid interaction and RNA remains in the A-family structure in these pigment complexes.  相似文献   

9.
Summary The differences on the thermal behaviour (DTG-DTA) of antigorite sample measured before and after sonication have been studied. Sonication treatment produces negligible changes in the structure of the material but substantial textural modifications. These modifications produce changes in the thermal behaviour of antigorite sample. Thus, it has been observed a decrease in the dehydroxylation temperature as measured by DTG and DTA effects. For sonication treatments longer than 20 h, two new effects of dehydroxylation are observed, the intensity of these two new effects increases with the sonication time showing a modification in the release of structural OH. It has been also observed that the formation of forsterite takes place simultaneously with the dehydroxylation of the antigorite. The high temperature exothermic effect is due to the recrystallization of forsterite and not to the formation of forsterite as traditionally assumed. Modifications in the thermal dehydroxylation of antigorite observed in this study are related to the pronounced decrease in particle size obtained by sonication.  相似文献   

10.
Twenty prenylated flavonoids 1-20 were synthesized by glycoside hydrolysis, dehydrogenation, selective O-methylation, O-prenylation and Claisen rearrangement reaction, from abundant and inexpensive natural flavonoids naringin, hespiredin, quercetin and myricetin. Among them, 1-7, 10-15 and 17-20 are novel compounds, the natural product 3,3',4',7-tetramethoxy-8-prenyl-5-hydroxy flavonoid(16) was synthesized in a high yield. Their antiprolirative activities were evaluated in vitro on a panel of three human cancer cell lines(HeLa, HCC1954 and SK-OV-3). The results show that most of the target compounds displayed moderate to potent antiprolirative activities against the three cancer cells with half maximal inhibitory concentration(IC50) values from 0.49 μmol/L to 95.07 μmol/L. Among them, 3',4',7-trimethoxyl-5-hydroxyl-8-prenyl flavonoid(12) exhibited the strongest antiprolirative activity against the three cancer cells mentioned above with IC50 values of 0.91-7.08 μmol/L. 3',7-Dimethoxy-5-O-prenyl flavone(6) and 3',4',7-trimethoxy-5-O-prenyl flavone(10) showed selective antiproliferative activity against HCC1954 cells with IC50 value of 0.49 and 5.32 μmol/L, respectively.  相似文献   

11.
Combinatorial chemistry approaches facilitate drug discovery processes and result in structural modifications of lead compounds that enhance pharmacological activity, improve pharmacokinetic properties, or reduce unwanted side effects. Epidemiological and animal model studies have suggested that nonsteroidal anti-inflammatory drugs (NSAIDs) can act as chemopreventive agents. The cyclooxygenase-2 (COX-2) inhibitor nimesulide shows anticancer effects in several cancer cell lines via COX-2-dependent and -independent mechanisms. The molecular structure of nimesulide was used as a starting scaffold to design novel sulfonanilide analogs and examine the structural features that contribute to this anticancer effect. A systematic combinatorial chemical approach was used to generate diversely substituted sulfonanilide derivatives that were tested for their effects on the proliferation of human breast cancer cells. Structure-function analysis indicated that the inhibition of cell growth by compounds derived from the novel sulfonanilides required a bulky terminal phenyl ring, a methanesulfonamide, and a hydrophobic carboxamide moiety.  相似文献   

12.
Although the structure of the hammerhead ribozyme is well characterized, many questions remain about its catalytic mechanism. Extensive evidence suggests the necessity of a conformational change en route to the transition state. We report a steric interference modification approach for investigating this change. By placing large 2' modifications at residues insensitive to structurally conservative 2'-deoxy modifications, we hoped to discover structural effects distal to the site of modification. Of twenty residues tested, six were identified where the addition of 2' bulk inhibits cleavage, even though these bulky modifications could be accommodated in the crystal structure without steric clash. It is proposed that these 2'-modifications inhibit cleavage by preventing formation of the alternate, active conformation. Since these 2' effects are present in both domain I and domain II of the hammerhead, the entire catalytic core must undergo conformational changes during catalysis.  相似文献   

13.
Alkaptonuria (AKU) is an inborn error of metabolism where mutation of homogentisate 1,2-dioxygenase (HGD) gene leads to a deleterious or misfolded product with subsequent loss of enzymatic degradation of homogentisic acid (HGA) whose accumulation in tissues causes ochronosis and degeneration. There is no licensed therapy for AKU. Many missense mutations have been individuated as responsible for quaternary structure disruption of the native hexameric HGD. A new approach to the treatment of AKU is here proposed aiming to totally or partially rescue enzyme activity by targeting of HGD with pharmacological chaperones, i.e. small molecules helping structural stability. Co-factor pockets from oligomeric proteins have already been successfully exploited as targets for such a strategy, but no similar sites are present at HGD surface; hence, transient pockets are here proposed as a target for pharmacological chaperones. Transient pockets are detected along the molecular dynamics trajectory of the protein and filtered down to a set of suitable sites for structural stabilization by mean of biochemical and pharmacological criteria. The result is a computational workflow relevant to other inborn errors of metabolism requiring rescue of oligomeric, misfolded enzymes.  相似文献   

14.
A new approach to (+)-cacospongionolide was developed to access conformationally restricted variants of the natural product. The flexible aliphatic region between the decalin and side chain portion of the natural product was replaced with alkenyl and alkynyl linkers to probe the influence of structural rigidity in the inhibition of secretary phospholipase A2 (sPLA2). It was found that when the aliphatic section is replaced with a Z-olefin or an alkyne, sPLA2 inhibitory activity suffered relative to the natural product; however, an E-olefin-containing analogue led to an enhanced activity. These results suggest that preferred sPLA2 binding conformation of the natural product is similar to the geometry of the E-olefin-containing analogue.  相似文献   

15.
L ‐Asparaginase from Erwinia chrysanthemi (ASPG_ERWCH; UniProtKB accession number P06608 (Erwinase®)) and L ‐asparaginase 2 from Escherichia coli (ASPG2_ECOLI; UniProtKB accession number P00805 (Medac®)), both L ‐asparagine amidohydrolases, are widely used for the treatment of acute lymphoblastic leukemia. A series of serious side effects have been reported and this warrants studies into the protein chemistry of the medical products sold. Mass spectrometry (MS) data on ASPG_ERWCH and ASPG2_ECOLI have not been published so far and herein a gel‐based proteomics study was performed to provide information about sequence and modifications of the commercially available medical products. ASPG_ERWCH and ASPG2_ECOLI were applied onto two‐dimensional gel electrophoresis, spots were in‐gel digested with several proteases and resulting peptides and protein modifications were analysed by nano‐ESI‐LC‐MS/MS. Four spots were observed for ASPG_ERWCH, six spots were observed for ASPG2_ECOLI and the identified proteins showed high sequence coverage without sequence conflicts. Several protein modifications including technical and posttranslational modifications were demonstrated. Protein modifications are known to change physicochemical, immunochemical, biological and pharmacological properties and results from this work may challenge re‐designing of the product including possible removal of the modifications by the manufacturer because it is not known whether they are contributing to the serious adverse effects of the protein drug.  相似文献   

16.
Leaf extract of Centella asiatica has been used as an alternative medicine for memory improvement in the Indian Ayurvedic system of medicine for a long time. Although several studies have revealed its effect in ameliorating the cognitive impairment in rat models of Alzheimer's disease, the molecular mechanism of C. asiatica on neuroprotection still remains unexplained. In this study, we investigated the effects of C. asiatica water extract on activity of subtypes of phospholipase A2 (PLA2) in primary cultures of rat cortical neurons and quantified by HPLC a possible molecule responsible for the activity. The cPLA2 and sPLA2 activities were inhibited in vitro by asiaticoside present in the water extract of C. asiatica. This extract may be a candidate for the treatment of neurodegenerative processes because of its pharmacological activity in the brain and its low toxicity, as attested by its long popular use as a natural product.  相似文献   

17.
Rab/Ypt guanosine triphosphatases (GTPases) represent a family of key membrane traffic regulators in eukaryotic cells. For their function Rab/Ypt proteins require double modification with two covalently bound geranylgeranyl lipid moieties at the C-terminus. Generally, prenylated proteins are very difficult to obtain by recombinant or enzymatic methods. We generated prenylated RabGTPases using a combination of chemical synthesis and protein engineering. This semi-synthesis depends largely on the availability of functionalized prenylated peptides corresponding to the proteins' native structure or modifications. We developed solution phase and solid phase strategies for the generation of peptides corresponding to the prenylated C-terminus of Rab7 GTPase in preparative amounts enabling us to crystallize the mono-prenylated Ypt1:RabGDI complex. The structure of the complex provides a structural basis for the ability of RabGDI to inhibit the release of nucleotide by Rab proteins and a molecular basis for understanding a RabGDI mutant that causes mental retardation in humans.  相似文献   

18.
The formation and the effects of laser irradiation of the complex formed by protoporphyrin IX (PPIX) and tubulin was investigated. We have used tubulin as a model protein to investigate whether docked photoactive ligands can affect the structure and function of polypeptides upon exposure to visible light. We observed that laser irradiation in the Soret band prompts bleaching of the PPIX, which is accompanied by a sharp decrease in the intensity and average fluorescence lifetime of the protein (dominated by the four tryptophan residues of the tubulin monomer). The kinetics indicate non‐trivial effects and suggest that the photosensitization of the PPIX bound to tubulin prompts structural alterations of the protein. These modifications were also observed through changes in the energy transfer between Trp residues and PPIX. The results suggest that laser irradiation produces localized partial unfolding of tubulin and that the changes prompt modification of the formation of microtubules in vitro. Measurements of singlet oxygen formation were inconclusive in determining whether the changes are prompted by reactive oxygen species or other excited state mechanisms.  相似文献   

19.
Shi P  He Q  Song Y  Qu H  Cheng Y 《Analytica chimica acta》2007,598(1):110-118
Flavonoid O-diglycosides are important bioactive compounds from genus Citrus. They often occur as isomers, which makes the structural elucidation difficult. In the present study, the fragmentation behavior of six flavonoid O-diglycosides from genus Citrus was investigated using ion trap mass spectrometry in negative electrospray ionization (ESI) with loop injection. For the flavonoid O-rutinosides, [M − H − 308] ion was typically observed in the MS2 spectrum, suggesting the loss of a rutinose. The fragmentation patterns of flavonoid O-neohesperidosides were more complicated in comparison with their rutinoside analogues. A major difference was found in the [M − H − 120] ion in the MS2 spectrum, which was a common feature of all the flavonoid O-neohesperidosides. The previous literature for naringin located the loss of 120 Da to the glycan part, whereas the present study for naringin had shown that the [M − H − 120] ion was produced by a retro-Diels-Alder reaction in ring C, and this fragmentation pattern was confirmed by the accurate mass measurement using an orthogonal time-of-flight mass spectrometer. Combined with high performance liquid chromatography (HPLC) and diode array detection (DAD), the established approach to the structural identification of flavonoid O-diglycosides by ion trap mass spectrometry was applied to the analysis of extracts of two Chinese medicines derived from genus Citrus, namely Fructus aurantii and F. aurantii immaturus. According to the HPLC retention behavior, the diagnostic UV spectra and the molecular structural information provided by multistage mass spectrometry (MSn) spectra, 13 flavonoid O-glycosides in F. aurantii and 12 flavonoid O-glycosides in F. a. immaturus were identified rapidly.  相似文献   

20.
The cysteine residues of yeast alcohol dehydrogenase (YADH) were covalently modified by N-(1-pyrenyl) maleimide (PM). A maximum of 3.4 cysteines per YADH monomer could be modified by PM. The secondary structure of PM-YADH was found to be similar to that of the native YADH using far-UV circular dichroism. The covalent modification of YADH by PM inhibited the enzymatic activity indicating that the active site of the enzyme was altered. PM-YADH displayed maximum excimer fluorescence at an incorporation ratio of 2.6 mol of PM per monomeric subunit of YADH. Nucleotide adenine dinucleotide (NAD) divalent zinc and ethanol reduced the excimer fluorescence of PM-YADH indicating that these agents induce conformational changes in the enzyme. Guanidinium hydrochloride (GdnHCl)-induced unfolding of YADH was analyzed using tryptophan fluorescence, pyrene excimer fluorescence and enzymatic activity. The unfolding of YADH was found to occur in a stepwise manner. The loss of enzymatic activity preceded the global unfolding of the protein. Further, changes in tryptophan fluorescence with increasing GdnHCl suggested that YADH was completely unfolded by 2.5 M GdnHCl. Interestingly, residual structures of YADH were detected even in the presence of 5 M GdnHCl using the excimer fluorescence of PM-YADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号