首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Prenylated proteins with non-native functionalities are generally very difficult to obtain by recombinant or enzymatic means. The semisynthesis of preparative amounts of prenylated Rab guanosine triphosphatases (GTPases) from recombinant proteins and synthetic prenylated peptides depends largely on the availability of functionalised prenylated peptides corresponding to the proteins' native structure or modifications thereof. Here, we describe and compare solution-phase and solid-phase strategies for the generation of peptides corresponding to the prenylated C terminus of Rab7 GTPase. The solid-phase with utilisation of a hydrazide linker emerges as the more favourable approach. It allows a fast and practical synthesis of pure peptides and gives a high degree of flexibility in their modification. To facilitate the analysis of semisynthetic proteins, the synthesised peptides were equipped with a fluorescent group. Using the described approach, we introduced fluorophores at several different positions of the Rab7 C terminus. The position of the incorporated fluorescent groups in the peptides did not influence the protein-ligation reaction, as the generated peptides could be ligated onto thioester-tagged Rab7. However, it was found that the positioning of the fluorescent group had an influence on the functionality of the Rab7 proteins; analysis of the interaction of the semisynthetic Rab7 proteins with REP (Rab escort protein) and GDI (guanosine diphosphate dissociation inhibitor) molecules revealed that modification of the peptide side chains or of the C-terminal isoprenoid did not significantly interfere with complex formation. However, functionalisation of the C terminus was found to have an adverse effect on complex formation and stability, possibly reflecting low structural flexibility of the Rab GDI/REP molecules in the vicinity of the lipid-binding site.  相似文献   

2.
Modification of proteins with isoprenoid lipids is a widespread phenomenon in eukaryotic organisms that has received much attention due to its involvement in the progression of several diseases including cancer. Progress in studies of prenylated proteins has been hampered by difficulties associated with isolation of these proteins from native or recombinant sources. Small GTPases of the Rab family represent a particularly difficult example since they are doubly C-terminally geranylgeranylated and in some cases methylated. Here, we report an efficient and versatile strategy for the synthesis of mono- and digeranylgeranylated fluorescent RabGTPases using a combination of chemical synthesis and expressed protein ligation. Using this approach we generated fluorescent mono- and diprenylated Rab7 proteins that display near-native properties and form stoichiometric complexes with their natural chaperone REP-1. We demonstrate that the complex formed from semisynthetic monoprenylated Rab7 and REP-1 represents a genuine intermediate of the Rab prenylation reaction and thus provides a unique tool for studies of the Rab prenylation mechanism. Semisynthetic Rab7 proteins were used to develop a novel fluorescence-based in vitro prenylation assay. Using this assay we dissected the mechanism of the Rab7 double-geranylgeranylation reaction mediated by Rab geranylgeranyl transferase. We conclude that the reaction follows a random sequential mechanism. These results highlight the usefulness of the semisynthetic reaction intermediates in the study of protein posttranslational modification.  相似文献   

3.
Protein prenylation, involving the alkylation of a specific C-terminal cysteine with a C(15) or C(20) isoprenoid unit, is an essential posttranslational modification required by most GTP-binding proteins for normal biological activity. Despite the ubiquitous nature of this modification and numerous efforts aimed at inhibiting prenylating enzymes for therapeutic purposes, the function of prenylation remains unclear. To explore the role the isoprenoid plays in mediating protein-protein recognition, we have synthesized a photoactivatable, isoprenoid-containing cysteine analogue (2) designed to act as a mimic of the C-terminus of prenylated proteins. Photolysis experiments with 2 and RhoGDI (GDI), a protein which interacts with prenylated Rho proteins, suggest that the GDI is in direct contact with the isoprenoid moiety. These results, obtained using purified GDI as well as Escherichia coli (E. coli) crude extract containing GDI, suggest that this analogue will be an effective and versatile tool for the investigation of putative isoprenoid binding sites in a variety of systems. Incorporation of this analogue into peptides or proteins should allow for even more specific interactions between the photoactivatable isoprenoid and any number of isoprenoid binding proteins.  相似文献   

4.
The release of neurotransmitter is regulated in the processes of membrane docking and membrane fusion between synaptic vesicles and presynaptic plasma membranes. Synaptic vesicles contain a diverse set of proteins that participate in these processes. Small GTP-binding proteins exist in the synaptic vesicles and are suggested to play roles for the regulation of neurotransmitter release. We have examined a possible role of GTP-binding proteins in the regulation of protein phosphorylation in the synaptic vesicles. GTPgammaS stimulated the phosphorylation of 46 kDa protein (p46) with pI value of 5.0-5.2, but GDPbetaS did not. The p46 was identified as protein interacting with C-kinase 1 (PICK-1) by MALDI-TOF mass spectroscopy analysis, and anti-PICK-1 antibody recognized the p46 spot on 2-dimensional gel electrophoresis. Rab guanine nucleotide dissociation inhibitor (RabGDI), which dissociates Rab proteins from SVs, did not affect phosphorylation of p46. Ca(2+)/calmodulin (CaM), which causes the small GTP-binding proteins like Rab3A and RalA to dissociate from the membranes and stimulates CaM-dependent protein kinase(s) and phosphatase, strongly stimulate the phosphorylation of p46 in the presence of cyclosporin A and cyclophylin. However, RhoGDI, which dissociates Rho proteins from membranes, reduced the phosphorylation of p46 to the extent of about 50%. These results support that p46 was PICK-1, and its phosphorylation was stimulated by GTP and Ca(2+)/CaM directly or indirectly through GTP-binding protein(s) and Ca(2+)/CaM effector protein(s). The phosphorylation of p46 (PICK-1) by GTP and Ca(2+)/CaM may be important for the regulation of transporters and neurosecretion.  相似文献   

5.
We report an efficient and streamlined way to improve the analysis and identification of peptides and proteins in complex mixtures of soluble proteins, cell lysates, etc. By using the shotgun proteomics methodology combined with bioaffinity purification we can remove or minimize the interference contamination of a complex tryptic digest and so avoid the time-consuming separation steps before the final MS analysis. We have proved that by means of enzymatic fragmentation (endoproteinases with Arg-C or/and Lys-C specificity) connected with the isolation of specific peptides we can obtain a simplified peptide mixture for easier identification of the entire protein. A new bioaffinity sorbent was developed for this purpose. Anhydrotrypsin (AHT), an inactive form of trypsin with an affinity for peptides with arginine (Arg) or lysine (Lys) at the C-terminus, was immobilized onto micro/nanoparticles with superparamagnetic properties (silica magnetite particles (SiMAG)-Carboxyl, Chemicell, Germany). This AHT carrier with a determined binding capacity (26.8 nmol/mg of carrier) was tested with a model peptide, human neurotensin, and the resulting MS spectra confirmed the validity of this approach.  相似文献   

6.
Small GTPases are molecular switches using GDP/GTP alternation to control numerous vital cellular processes. Although aberrant function and regulation of GTPases are implicated in various human diseases, direct targeting of this class of proteins has proven difficult, as GTPase signaling and regulation is mediated by extensive and shallow protein interfaces. Here we report the development of inhibitors of protein–protein interactions involving Rab proteins, a subfamily of GTPases, which are key regulators of vesicular transport. Hydrocarbon‐stapled peptides were designed based on crystal structures of Rab proteins bound to their interaction partners. These modified peptides exhibit significantly increased affinities and include a stapled peptide (StRIP3) that selectively binds to activated Rab8a and inhibits a Rab8a–effector interaction in vitro.  相似文献   

7.
Arginine forms a stable noncovalent anionic salt bridge complex with DP (a crown ether which contains two endocyclic dialkylhydrogenphosphate esters). Abundant adduct formation with DP is observed for complexes with arginine, YAKR, HPPGFSPFR, AAKRKAA, RR, RPPGFSPFR, RYLGYL, RGDS, and YGGFMRGL in electrospray ionization mass spectrometry (ESI-MS) experiments. DFT calculations predict a hydrogen bonded salt bridge structure with a protonated guanidinium flanked by two deprotonated phosphates to be the lowest energy structure. Dissociation of DP/peptide adducts reveals that, in general, the relative gas phase acidity of a peptide is dependent on peptide length, with longer peptides being more acidic. In particular, peptides that are six residues or more in length can stabilize the deprotonated C-terminus by extensive hydrogen bonding with the peptide backbone. Dissociation of DP/peptide complexes often yields the deprotonated peptide, allowing for the facile formation of anionic peptides that otherwise would be difficult to generate in high abundance. Although DP has a preference for binding to arginine residues in peptides, DP is also observed to form less abundant complexes with peptides containing multiple lysines. Lys-Xxx-Lys and Lys-Lys sequences form low abundance anionic adducts with DP. For example, KKKK exclusively forms a double adduct with one net negative charge on the complex.  相似文献   

8.
Production of recombinant proteins is an important prerequisite for biotechnology and life sciences in general. However, there is a paucity of methods for production of posttranslationally modified recombinant proteins or proteins with non-native functional groups, such as fluorophores, spin labels, and so forth. In this work we have used a combination of organic synthesis and in vitro protein ligation to construct monoprenylated Rab7 GTPase. The protein was prepared from a recombinant N-terminal portion and a peptide mimicking the C terminus of Rab7. For construction of a synthetic six-amino-acid-long fluorescent monoprenylated peptide, we used a block condensation strategy. Ligation was achieved with a yield of >70%. The resulting protein was purified from the unligated peptide by a combination of organic extraction and phase partitioning and refolding. The refolded monoprenylated semisynthetic Rab7 protein (Rab7GG) formed a stable complex with its natural chaperone REP-1 (Rab escort protein 1) and could serve as an acceptor of the second prenyl group in the enzymatic prenylation reaction. Using fluorescence spectroscopy, we characterized the interaction of the Rab7GG:REP-1 complex with Rab geranylgeranyl transferase and came to the conclusion that it functioned as a genuine intermediate of the prenylation reaction. Thus, we present the first example of the in vitro generation of a semisynthetic lipidated protein using the native chemical ligation method.  相似文献   

9.
Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.  相似文献   

10.
Weak transient protein–protein interactions (PPIs) play an essential role in cellular dynamics. However, it is challenging to obtain weak protein complexes owing to their short lifetime. Herein we present a general and facile method for trapping weak PPIs in an unbiased manner using proximity‐induced ligations. To expand the chemical ligation spectrum, we developed novel N2N (N‐terminus to N‐terminus) and C2C (C‐terminus to C‐terminus) ligation approaches. By using N2C (N‐terminus to C‐terminus), N2N, and C2C ligations in one pot, the interacting proteins were linked. The weak Ypt1:GDI interaction drove C2C ligation with t1/2 of 4.8 min and near quantitative conversion. The Ypt1‐GDI conjugate revealed that binding of Ypt1 G‐domain causes opening of the lipid‐binding site of GDI, which can accommodate one prenyl group, giving insights into Rab membrane recycling. Moreover, we used this strategy to trap the KRas homodimer, which plays an important role in Ras signaling.  相似文献   

11.
We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.  相似文献   

12.
Silver(I) forms aqueous phase complexes with both sulfur and nonsulfur containing peptides and proteins. These complexes were introduced into the gas phase via electrospray, and their structures probed by means of tandem mass spectrometry. Experiments with di-, tri-, and oligopeptides show that the abundance of silver(I)-containing ions increases relative to that of proton-containing ions as peptide length increases. This increase is much more dramatic for methionine-containing peptides. Collision-induced dissociation of silver-peptide complexes yields a multitude of product ions that are silver containing. However, even for methioninecontaining peptides, very few of these product ions contain the methionine residue. The solution-phase structure and the gas-phase structure of the silver/peptide complex are not identical. The methionine sulfur acts as the silver anchoring point in solution. Desolvation in the gas phase leads to a rearrangement of the silver/peptide complex such that the silver ion becomes chelated to the nitrogen and oxygen atom on the peptide backbone in addition to the methionine sulfur. This rearrangement decreases the importance of the silver/sulfur bond to the extent that it is frequently broken upon collision activation and leads to the formation of silver/peptide product ions that are nonsulfur bearing.  相似文献   

13.
Mirror image peptides have unique stability and immunogenic properties in mammals, making them attractive agents to investigate. Their properties inside cells have been mostly unexplored because biopolymers are difficult to transport across cellular membranes. Here, we used protective antigen (PA) from anthrax toxin to deliver mirror image polypeptide cargo into the cytosol of mammalian cells when conjugated to the C-terminus of the PA-binding domain of lethal factor, LFN. We found mirror image polypeptides and proteins were translocated as efficiently into cells as their L counterparts. Once in the cytosol, by the use of western blot, we found that d peptides at the C-terminus of LFN were able to achieve higher steady state concentrations when compared to the l-peptide conjugate. With this platform, we delivered a d-peptide MDM2 antagonist to disrupt the p53/MDM2 interaction in cancer cells. For the first time, we show the PA/LFN system is adaptable for the intracellular delivery of mirror image peptides and proteins.  相似文献   

14.
Diels-Alder ligation of peptides and proteins   总被引:2,自引:0,他引:2  
The development of the Diels-Alder cycloaddition as a new method for the site-specific chemoselective ligation of peptides and proteins under mild conditions is reported. Peptides equipped with a 2,4-hexadienyl ester and an N-terminal maleimide react in aqueous media to give cycloadducts in high yields and depending on the amino acid sequence with high stereoselectivity. Except for the cysteine SH group the transformation is compatible with all amino acid side chain functional groups. For ligation to proteins the hexadienyl group was attached to avidin and streptavidin noncovalently by means of complex formation with a biotinylated peptide or by covalent attachment of a hexadienyl ester-containing label to lysine side chains incorporated into the proteins. Site-specific attachment of the hexadienyl unit into a Rab protein was achieved by means of expressed protein ligation followed by protection of the generated cysteine SH by means of Ellman's reagent. The protein reacted with different maleimido-modified peptides under mild conditions to give the fully functional cycloadducts in high yield. The results demonstrate that the Diels-Alder ligation offers an advantageous and technically straightforward new opportunity for the site-specific equipment of peptides and proteins with further functional groups and labels. It proceeds under very mild conditions and is compatible with most functional groups found in proteins. Its combination with other ligation methods, in particular expressed protein ligation is feasible.  相似文献   

15.
The CH/pi hydrogen bond is a weak molecular force occurring between CH groups (soft acids) and pi-systems (soft bases), and has been recognized to be important in the interaction of proteins with their specific ligands. For instance, it is well known that Src homology-2 protein (SH2) recognizes its specific pTyr peptide in two key regions, pTyr-binding region and specificity-determining region, by the use of attractive molecular forces, including the CH/pi hydrogen bond. We hypothesized that the CH/pi hydrogen bond plays a key role in determining the selectivity of SH2 proteins, and studied this issue by the ab initio fragment molecular orbital (FMO) method. The FMO calculations were carried out, at the HF/6-31G* and MP2/6-31G* level, for SH2 domains of Src, Grb2, P85alpha(N), Syk, and SAP, in complex with corresponding pTyr peptides. CH/pi hydrogen bonds have in fact been found to be important in stabilizing the structure of the complexes. We conclude that the CH/pi hydrogen bond plays an indispensable role in the recognition of SH2 domains with their specific pTyr peptides, thus playing a vital role in the signal transduction system.  相似文献   

16.
Due to their substitution with an isoprenoid group, prenylated flavonoids have an increased affinity for biological membranes and target proteins, enhancing their potential bioactivity. Although many prenylated flavonoids have been described, there are no methods that specifically screen for their presence in complex mixtures, prior to purification. We describe a method based on ultra‐high‐performance liquid chromatography (UHPLC) with electrospray ionisation mass spectrometry (ESI‐MS) that allows rapid screening for prenylated flavonoids in multi‐component plant extracts. Identification of the prenylated flavonoids is based on screening for neutral losses of 42 u and 56 u in the positive‐ion mode MS2 and MS3 spectra within the MS chromatograms. In addition, this method discriminates between a prenyl chain and a ring‐closed prenyl (pyran ring), based on the ratio of the relative abundances of the ions that lose 42 u and 56 u (42:56). The application of this screening method on a 70% aq. ethanol, ethanol and ethyl acetate extract of the roots of Glycyrrhiza glabra indicated the presence of 70 mono‐ and di‐prenylated flavonoids. In addition, of each prenylated flavonoid the type of prenylation, chain or pyran ring was determined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Apolar, neutral peptides have been shown to ionize extremely well under the conditions used for electrospray ionization mass spectrometry (ESIMS). Peptides for which the conformations have been independently determined in solution and in crystals have been examined by ESIMS. Studies of peptide helices ranging from 7 to 18 residues reveal that shorter helices yield exclusively singly charged ions, while in larger helices multiply charged species are detectable. Multiple sites for protonation/metallation are introduced in the helix by proline insertion or by changing the chirality in the residue. The preferred site of cation binding to helices may be the C-terminus end, where three free CO groups are available for chelation. Ab initio and DFT calculations at several levels have been carried out for the binding of H+, Li+, Na+, and K+ to CHO-(Gly)3)-OMe. The results reveal that metallation in helices is favoured by chelation to carbonyl groups at the C-terminus, while protonation involved two carbonyl groups and thus favour a 10-membered cyclic hydrogen-bonded structure. In -strands, metallation/protonation occurs at isolated carbonyl groups. Collision induced fragmentation of hydrophobic peptides under ESI conditions reveals that helix fragmentation occurs predominantly from the C-terminus, while in -hairpins cleavage occurs simultaneously at multiple sites.  相似文献   

18.
Despite the availability of several mature structure determination techniques for bulk proteins, determination of structural and orientational information of interfacial proteins, e.g., in cell membranes or on biomaterial surfaces, remains a difficult problem. We combine sum frequency generation (SFG) vibrational spectroscopy with attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) to investigate the orientation of alpha-helical peptides reconstituted in substrate supported lipid bilayers. Melittin was chosen as a model for alpha-helical peptides, and its orientation when interacting with a supported 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) bilayer has been examined. Through polarization analysis using amide I signals obtained from both SFG and ATR-FTIR measurements, the orientation distribution of melittin inside a DPPG bilayer was deduced using several trial distribution functions. Melittin was modeled as either an ideal helix or a helix with a bent structure. It was found that a simple distribution function such as a delta-distribution or a Gaussian distribution was not adequate to describe the melittin orientation distribution inside a DPPG bilayer. Instead, two populations of melittin, corresponding to two melittin-bilayer association states, could be used to interpret the experimentally observed result. The method employed in this study demonstrates the feasibility of acquiring a more accurate orientation distribution of peptides/proteins in situ using a combination of vibrational spectroscopic techniques without exogenous labeling.  相似文献   

19.
The dissociation of deprotonated peptides containing hydroxyl side chains was studied by electrospray ionization coupled with Fourier transform ion cyclotron resonance (ESI-FTICR) via sustained off-resonance irradiation collision induced dissociation (SORI-CID). Dissociation under post-source decay (PSD) conditions was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). This work included hexapeptides with one residue of serine, threonine, or tyrosine and five inert alanine residues. During SORI-CID and PSD, dissociation of [M-H](-) yielded c- and y-ions. Side-chain losses of formaldehyde (HCHO) from serine-containing peptides, acetaldehyde (CH(3)CHO) from threonine-containing peptides, and 4-methylene-2,5-cycohexadienone (C(7)H(6)O) from tyrosine-containing peptides were generally observed in the negative ion PSD and SORI-CID spectra. Side-chain loss occurs much less from tyrosine-containing peptides than from serine- and threonine-containing peptides. This is probably due to the bulky side chain of tyrosine, resulting in steric hindrance and poor geometry for dissociation reactions. Additionally, a selective cleavage leading to the elimination of the C-terminal residue from [M-H](-) was observed from the peptides with serine and threonine at the C-terminus. This cleavage does not occur in the dissociation of peptides with an amide group at the C-terminus or peptides with neutral or basic residues at the C-terminus. It also does not occur with tyrosine at the C-terminus. Both the C-terminal carboxylic acid group and the hydroxyl side chain of the C-terminal residue must play important roles in the mechanism of C-terminal residue loss. A mechanism involving both the C-terminal carboxylic acid group and a hydroxyl side chain of serine and threonine is proposed.  相似文献   

20.
The peptide library present in the venom of the piscivorous marine snail Conus achatinus has been probed using a combination of mass spectrometry and cDNA sequencing methods. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis, before and following global reduction/alkylation of peptide mixtures, permits the rapid classification of individual components on the basis of the number of disulfide bonds. Mass fingerprinting and the reverse phase HPLC retention times permit a further deconvolution of the library in terms of peptide size and hydrophobicity. Sequencing of cDNA derived using O-superfamily specific primers yielded five complete conotoxin precursor sequences, ranging in polypeptide length from 75-87 residues containing six Cys residues at the C-terminus. Sequence analysis permits classification of the five putative mature peptides (Ac 6.1 to Ac 6.5) as delta, omega, and omega-like conotoxins. The presence of these predicted peptides in crude venom was established by direct matrix assisted laser desorption ionization tandem mass spectrometry (MALDI-MS/MS) sequencing following trypsin digestion of the peptide mixture after global reduction/alkylation. The determination of partial peptide sequences and comparison with the predicted sequences resulted in the identification of four of the five predicted conotoxins. The characterization of posttranslationally modified analogs, which are hydroxylated at proline or amidated at the C-terminus is also demonstrated. Crude venom analysis should prove powerful in studying both inter- and intra-species variation in peptide libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号