首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the removal of arsenic from marine products, iowaite was prepared and investigated to determine the optimal adsorption process of arsenic. Different chemical forms of arsenic (As(III), As(V)) with varying concentrations (0.15, 1.5, 5, 10, 15, and 20 mg/L) under various conditions including pH (3, 5, 7, 9, 11) and contact time (1, 2, 5, 10, 15, 30, 60, 120, 180 min) were exposed to iowaite. Adsorption isotherms and metal ions kinetic modeling onto the adsorbent were determined based on Langmuir, Freundlich, first- and second-order kinetic models. The adsorption onto iowaite varied depending on the conditions. The adsorption rates of standard solution, As(III) and As(V) exceeded 95% under proper conditions, while high complexity was noted with marine samples. As(III) and As(V) from Mactra veneriformis extraction all decreased when exposed to iowaite. The inclusion morphology and interconversion of organic arsenic limit adsorption. Iowaite can be efficiently used for inorganic arsenic removal from wastewater and different marine food products, which maybe other adsorbent or further performance of iowaite needs to be investigated for organic arsenic.  相似文献   

2.
Ferric nitrate–graphene (FG) nanocomposites synthesized via the equivalent‐volume impregnation method were used for the removal of As(V) species from simulated arsenic‐containing wastewater. Effects of various factors were assessed, such as the reaction temperature, solution pH, adsorbent dosage, and reaction time. The results indicated that the As(V) removal efficiency was as high as 99%, and the concentration of arsenic‐containing wastewater after FG treatment was as low as 9.4 μg L–1 as a result of the optimal absorption capacity and maximum specific surface area (171.766 m2/g) of this material. The equilibrium adsorption capacity of FG for As(V) was achieved in approximately 20 min, and the maximum adsorption capacity was calculated to be 112.4 mg g–1 by Langmuir adsorption isotherm, which was higher than that of other adsorbents such as manganese‐incorporated iron(III) oxide–graphene (14.42 mg g–1). Moreover, the removal efficiency of As(V) can be maintained above 95% under acidic and alkaline conditions. Brunauer–Emmett–Teller analysis showed that the modified FG pore structure was regular. Based on the characterizations by X‐ray diffraction, X‐ray photoelectron spectroscopy, and Fourier transform infrared, the products on the surface of the used FG were Fe(OH)3, FeAsO4, and other compounds, and As(V) was mainly removed by the formation of insoluble compounds and coprecipitation.  相似文献   

3.
Adsorption of As(III) from aqueous solutions by iron oxide-coated sand   总被引:1,自引:0,他引:1  
Arsenic is a toxic element and may be found in natural waters as well as in industrial waters. Leaching of arsenic from industrial wastewater into groundwater may cause significant contamination, which requires proper treatment before its use as drinking water. The present study describes removal of arsenic(III) on iron oxide-coated sand in batch studies conducted as a function of pH, time, initial arsenic concentration, and adsorbent dosage. The results were compared with those for uncoated sand. The adsorption data fitted well in the Langmuir model at different initial concentration of As(III) at 20 g/l fixed adsorbent dose. Maximum adsorption of As(III) for coated sand is found to be much higher (28.57 microg/g) than that for uncoated sand (5.63 microg/g) at pH 7.5 in 2 h. The maximum As(III) removal efficiency achieved is 99% for coated sand at an adsorbent dose of 20 g/l with initial As(III) concentration of 100 microg/l in batch studies. Column studies have also been carried out with 400 microg/l arsenic (pH 7.5) by varying the contact time, filtration rate, and bed depth. Results of column studies demonstrated that at a filtration rate of 4 ml/min the maximum removal of As(III) observed was 94% for coated sand in a contact time of 2 h. The results observed in batch and column studies indicate that iron oxide-coated sand is a suitable adsorbent for reducing As(III) concentration to the limit (50 microg/l) recommended by Indian Standards for Drinking Water.  相似文献   

4.
Jitmanee K  Oshima M  Motomizu S 《Talanta》2005,66(3):529-533
A novel and simple flow-based method was developed for the simultaneous determination of As(III) and As(V) in freshwater samples. Two miniature columns with a solid phase anion exchange resin, placed on two 6-way valves were utilized for the solid-phase collection/concentration of arsenic(III) and arsenic(V), respectively. As(III) could be retained on the column after its oxidation to As(V) species with an oxidizing agent. The collected analytes were then sequentially eluted by 2 M nitric acid and introduced into ICP-AES. Potassium permanganate was examined as potential oxidizing agent for conversion of As(III) to As(V). The standard deviation of the analytical signals (peak height) for the replicate analysis (n = 5) of 0.5 μg l−1 solution were 3 and 5% for As(III) and As(V), respectively. The limit of detection (3σ) for both As(III) and As(V) were 0.1 μg l−1. The proposed system produced satisfactory results on the application to the direct analysis of inorganic arsenic species in freshwater samples.  相似文献   

5.
新型树脂基水合氧化铁对水体中微量砷的吸附性能研究   总被引:6,自引:0,他引:6  
将水合氧化铁固载于凝胶型强碱阴离子树脂N201上并合成出新型除砷吸附剂N201-Fe.研究了不同实验条件下N201-Fe对去除水溶液As(V)的影响.实验结果表明,N201-Fe对砷的吸附受pH值的影响较小;N201-Fe对As(V)具有很高选择性,在Cl-、HCO3-、SO42-等竞争离子共存时,N201对As(V)的去除率不到2%,而N201-Fe却高达90%.N201-Fe对As(V)的高选择性归因于N201-Fe中水合氧化铁与As(V)之间的络合配位能力及树脂表面的Donnan膜效应.静态吸附实验表明N201-Fe吸附As(V)的等温线符合Freundlich模型,热力学结果显示,该吸附过程为吸热过程.动态穿透实验表明,模拟水中的As(V)经N201-Fe处理后可达到中国和美国的饮用水标准,且N201-Fe的吸附处理量较N201提高30多倍.  相似文献   

6.
Adsorption of arsenic on clay surfaces is important for the natural and simulated removal of arsenic species from aqueous environments. In this investigation, three samples of clay minerals (natural metakaoline, natural clinoptilolite-rich tuff, and synthetic zeolite) in both untreated and Fe-treated forms were used for the sorption of arsenate from model aqueous solution. The treatment of minerals consisted of exposing them to concentrated solution of Fe(II). Within this process the mineral surface has been laden with Fe(III) oxi(hydroxides) whose high affinity for the As(V) adsorption is well known. In all investigated systems the sorption capacity of Fe(II)-treated sorbents increased significantly in comparison to the untreated material (from about 0.5 to >20.0 mg/g, which represented more than 95% of the total As removal). The changes of Fe-bearing particles in the course of treating process and subsequent As sorption were investigated by the diffuse reflectance spectroscopy and the voltammetry of microparticles. IR spectra of treated and As(V)-saturated solids showed characteristic bands caused by Fe(III)SO(4), Fe(III)O, and AsO vibrations. In untreated As(V)-saturated solids no significant AsO vibrations were observed due to the negligible content of sorbed arsenate.  相似文献   

7.
The adsorption characteristics of As(V) and As(III) on titanium dioxide loaded Amberlite XAD-7 resin have been studied. The resin was prepared by impregnation of Ti(OC2H5)4 followed by hydrolysis with ammonium hydroxide. Batch adsorption experiments were carried out as a function of the pH, shaking time and the concentration of As(V) and As(III) ions. The resin showed a strong adsorption for As(V) from pH 1 to 5 and for As(III) from pH 5 to 10. The adsorption isotherm data for As(V) at pH 4 fitted well to a Langmuir equation with a binding constant of 59 dm3 mol(-1) and a capacity constant of 0.063 mmol g(-1). The data for As(III) at pH 7 also fitted well to a Langmuir equation with a binding constant of 5.4 dm3 mol(-1) and a capacity constant of 0.13 mmol g(-1). The effect of diverse ions on the adsorption of arsenic was also studied. Column adsorption experiments showed that the adsorption of As(III) is more favorable compared to As(V), due to both the faster adsorption and larger capacity for As(III) than As(V).  相似文献   

8.
Hydrazine (HZ) and sodium borohydride (BH) are commonly used reagents for the production of palladium nanoparticles (PdNP) in aqueous solution and also for the reduction of arsenic from higher oxidation state to lower oxidation state. A methodology based on the quantitative adsorption of reduced arsenic species on PdNP generated in situ by BH and HZ is described to characterize As (V) and As (III) in environmental water samples. It was observed that PdNP obtained by BH gave quantitative recovery of As (V) and (III) and the PdNP obtained by HZ could account for As (III). The reduced palladium particles are collected and dissolved in minimum amount of nitric acid. The quantification of arsenic was carried out using GFAAS. Optimization of the experimental conditions and instrumental parameters were investigated in detail. The proposed procedure was validated by applying it for the determination of the content of total As in Certified Reference Material BND 301-02 (NPL, India). The detection limit of arsenic in environmental water samples was 0.029 μg L−1 with an enrichment factor of 50. The relative standard deviation (R.S.D.) for 10 replicate measurements of 5 μg mL−1 was 4.2%. The proposed method was successfully applied for the determination of sub ppm to ppm levels of arsenic (V), (III) in environmental water samples.  相似文献   

9.
采用电化学石英晶体微天平(EQCM)技术研究了Britton-Robinson(B-R,pH=1.8~11.2)缓冲溶液和H2SO4介质中电镀铂淦的金电极上As(Ⅲ)的循环伏安行为.通过实时监测EQCM频率等参数的变化过程并利用预电沉积As(O)放大电极响应信号,考察了两电极上As.(O)的电沉积、AsⅢ皿和AsⅤ助组...  相似文献   

10.
The adsorption of arsenic(V) was investigated using macroporous resin beads containing magnetite crystals. Arsenic(V) was favorably adsorbed at pH 2-9, where the distribution coefficients were larger than 10(3). The maximum capacity was 0.050 mmol/g. Metal cations including Ca(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and La(III) did not give serious interference at 10(-4) M level. Diluted arsenic(V) was collected with a packed column, and the retained arsenic(V) was quantitatively eluted out with 1 M NaOH.  相似文献   

11.
A study of arsenic adsorption using iron(III) loaded chelating resin as adsorbent is presented. The experiments were carried out in batch mode by using aqueous solutions containing 1000 ppm As, and using an iron(III) loaded iminodiacetate resin (LEWATIT TP 207) with sorption capacity of 168 mg Fe/g resin. The equilibrium time for adsorption was found to be one hour under the experimental conditions used. The influence of pH was studied in the range of 0.8÷8.5. The highest arsenic adsorption was found at pH 1.7. Under these conditions the adsorption capacity for As was approximately 60 mg As/g resin.  相似文献   

12.
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater.  相似文献   

13.
Batch and column tests were performed utilizing natural siderite to remove As(V) and As(III) from water. One hundred milligrams of siderite was reacted at room temperature for up to 8 days with 50 mL of 1000 microg/L As(V) or As(III) in 0.01 M NaCl. Arsenic concentration decreased exponentially with time, and pseudoequilibrium was attained in 3 days. The estimated adsorption capacities were 520 and 1040 microg/g for As(V) and As(III), respectively. Column studies show that effluent As was below 1.0 microg/L after a throughput of 26,000 pore volumes of 500 microg/L As water, corresponding to about 2000 microg/g of As load in the filter. Results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that high As retention capacity of the filter arose from coprecipitation of Fe oxides with As and subsequent adsorption of As on the fresh Fe oxides/hydroxides. Arsenic adsorption in the filter from As-spiked tap water was relatively lower than that from artificial As solution because high HCO(-)(3) concentration restrained siderite dissolution and thus suppressed production of the fresh Fe oxides on the siderite grains. The TCLP (toxicity characteristic leaching procedure) results suggest that these spent adsorbents were inert and could be landfilled.  相似文献   

14.
A new method of hollow fiber liquid phase microextraction (HF-LPME) using ammonium pyrrolidine dithiocarbamate (APDC) as extractant combined with electrothermal atomic absorption spectrometry (ETAAS) using Pd as permanent modifier has been described for the speciation of As(III) and As(V). In a pH range of 3.0-4.0, the complex of As(III)-APDC complex can be extracted using toluene as the extraction solvent leaving As(V) in the aqueous layer. The post extraction organic phase was directly injected into ETAAS for the determination of As(III). To determine total arsenic in the samples, first As(V) was reduced to As(III) by l-cysteine, and then a microextraction method was performed prior to the determination of total arsenic. As(V) assay was based on subtracting As(III) form the total arsenic. All parameters, such as pH of solution, type of organic solvent, the amount of APDC, stirring rate and extraction time, affecting the separation of As(III) from As(V) and the extraction efficiency of As(III) were investigated, and the optimized extraction conditions were established. Under optimized conditions, a detection limit of 0.12 ng mL−1 with enrichment factor of 78 was achieved. The relative standard deviation (R.S.D.) of the method for five replicate determinations of 5 ng mL−1 As(III) was 8%. The developed method was applied to the speciation of As(III) and As(V) in fresh water and human hair extracts, and the recoveries for the spiked samples are 86-109%. In order to validate the developed method, three certified reference materials such as GBW07601 human hair, BW3209 and BW3210 environmental water were analyzed, and the results obtained were in good agreement with the certified values provided.  相似文献   

15.
To avoid changes in the original As species distribution in natural water after sampling, a method of immediate separation of As(V) by anion exchange at the sampling site was developed. The procedure consists of two steps. The total concentration of arsenic is determined in one part of the water sample acidified on site. Another part of the water samples is pressed through a column filled with an anion exchanger. The As(III) species that is not redox-stable remains in the effluent of the sorbents column and can be analyzed with conventional methods after stabilization by addition of conc. HNO3. As(V) is sorbed by the exchanger material. The As(V) concentration can be calculated as the difference between Assol and As(III), neglecting very low contents of methylated species. Oxidation of Fe(II) by air followed by co-precipitation of arsenic with iron hydroxide was applied in field experiments to minimize the As concentration in seepage and mining water.  相似文献   

16.
Emulsion liquid membranes (ELM) consisting of L113A (surfactant), liquid paraffin (stabilizer) and kerosene (solvent), with HCl solution acting as the external phase and KOH solution acting as the internal phase, were applied to the prior separation of arsenic(III) and arsenic(V) with subsequent spectrophotometric determination by AgDDTC. The effect of various parameters on the recovery of arsenic(III) were investigated. 8 mol/L HCl was required for 95% As(III) recovery. After reduction of As(V) to As(III) with sufficient KI, total arsenic could be determined. The RSD of As(III) and As(total) were both less than 3%. The procedure was applied to aqueous samples with a recovery of 93.5%–101%. Received: 22 March 1998 / Revised: 12 September 1998 / Accepted: 17 September 1998  相似文献   

17.
Emulsion liquid membranes (ELM) consisting of L113A (surfactant), liquid paraffin (stabilizer) and kerosene (solvent), with HCl solution acting as the external phase and KOH solution acting as the internal phase, were applied to the prior separation of arsenic(III) and arsenic(V) with subsequent spectrophotometric determination by AgDDTC. The effect of various parameters on the recovery of arsenic(III) were investigated. 8 mol/L HCl was required for 95% As(III) recovery. After reduction of As(V) to As(III) with sufficient KI, total arsenic could be determined. The RSD of As(III) and As(total) were both less than 3%. The procedure was applied to aqueous samples with a recovery of 93.5%–101%. Received: 22 March 1998 / Revised: 12 September 1998 / Accepted: 17 September 1998  相似文献   

18.
Human poisoning and death from arsenic(As) have occurred as a result of drinking water contaminated with As in some regions and countries, such as Taiwan, Chile, Bangladesh, and In-dia[1]. Chronic arsenism poses a serious health problem in China also[2]. If China lowers its current drinking water standard of As from 0.05 to 0.01 mg/L[3], a level adopted by WHO[4] and some industrialized countries[5], the population affected will increase significantly. It is of great impor-tance to develo…  相似文献   

19.
Ezel Boyac?  Talal Shahwan 《Talanta》2010,80(3):1452-1525
A natural biosorbent containing amine functional groups, chitosan, and a novel sorbent, chitosan-immobilized sodium silicate, were prepared and utilized for the selective sorption of As(V) from waters prior to its determination by atomic spectrometric techniques, namely, hydride generation atomic absorption spectrometry (HGAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Chitosan was synthesized from chitin and sodium silicate was used as the immobilization matrix due to its straightforward synthesis. Through sequential sorption studies, it was shown that chitosan-immobilized sodium silicate has exhibited a better chemical stability than the chitosan itself which demonstrates the advantage of immobilization method. Both chitosan and chitosan-immobilized sodium silicate were shown to selectively adsorb As(V), arsenate, from waters at pH 3.0 at which neither chitin nor sodium silicate displayed any sorption towards As(V). The sorption of arsenate by chitosan is supposed to have electrostatic nature since pH of 3.0 is both the point at which the amino groups in chitosan are protonated and also the predominant form of As(V) is H2AsO4. A pre-oxidation step is required if both As(III) and As(V) are to be determined. Desorption from the sorbents was realized with 1.0% (w/v) l-cysteine prepared in a pH 3.0 solution adjusted with HCl. Among the possible interfering species tested, only Te(IV) and Sb(III) were shown to cause a decrease in the sorption capacity especially at high interferant concentrations. High concentrations of Sb(III) also resulted in gas phase interference during hydride generation.The validity of the method was checked both via spike recovery experiments and also through the analysis of a standard reference material. Spike recovery tests were carried out with four different types of water; namely, ultra-pure, bottled drinking, tap, and sea water; and percent recovery values were found to be 114 (±4), 112 (±2), 43 (±4), and 0 (±1), respectively. It was concluded that the proposed methodology can be applied efficiently to low-to-medium ionic strength solutions, such as most drinking waters. The accuracy of the method was additionally investigated through the analysis of a standard reference material and a good correlation was found between the determined (26.6 ± 2.4 μg L−1) and the certified (26.67 μg L−1) value.  相似文献   

20.
The paper presents the principles and advantages of a technique combining high performance liquid chromatography and hydride generation atomic absorption spectrometry (HPLC-HGAAS) applied to speciation analysis of inorganic species of arsenic As(III) and As(V) in ground water samples. With separation of the arsenic species on an ion-exchange column in the chromatographic system and their detection by the hydride generation atomic absorption spectrometry, the separation of the analytical signals of the arsenic species was excellent at the limits of determination of 1.5 ng/ml As(III) and 2.2 ng/ml As(V) and RSD of 4.3% and 7.8% for the concentration of 25 ng/ml. The hyphenated technique has been applied for determination of arsenic in polluted ground water in the course of the study on migration of micropollutants. For total arsenic concentration two independent methods: HGICP-OES and HGAAS were used for comparison of results of real samples analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号