首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of cyclohexylphosphonic acid (C(6)H(11)PO(3)H(2)), anhydrous CuCl(2) and 2,2'-bipyridine (bpy) in the presence of triethylamine followed by a metathesis reaction with KNO(3) afforded [Cu(4)(mu-Cl)(2)(mu(3)-C(6)H(11)PO(3))(2)(bpy)(4)](NO(3))(2) (1). In an analogous reaction involving Cu(OAc)(2).H(2)O, the complex [Cu(4)(mu-CH(3)COO)(2)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4)](CH(3)COO)(2) (2) has been isolated. The three-component reaction involving Cu(NO(3))(2).3H(2)O, cyclohexylphosphonic acid and 2,2'-bipyridine in the presence of triethylamine afforded the tetranuclear assembly [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4) (H(2)O)(2)](NO(3))(3) (3). Replacing 2,2'-bipyridine with 1,10-phenanthroline (phen) in the above reaction resulted in [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(phen)(4)(H(2)O)(2)](NO(3))(3) (4). In all the copper(II) phosphonates (1-4) the two phosphonate ions bridge the four copper(II) ions in a capping coordination action. Each phosphonate ion bridges four copper(II) ions in a mu(4), eta(3) coordination mode or 4.211 of the Harris notation. Variable-temperature magnetic studies on reveal that all four complexes exhibit moderately strong intramolecular antiferromagnetic coupling. The DNA cleavage activity of complexes 1-4 is also described. Compounds 1 and 3 were able to completely convert the supercoiled pBR322 DNA form I to nick form II without any co-oxidant. In contrast, 50% conversion occurred with and 40% with 4. In the presence of magnesium monoperoxyphthalate all four compounds achieved rapid conversion of form I to form II.  相似文献   

2.
Liu TF  Lü J  Tian C  Cao M  Lin Z  Cao R 《Inorganic chemistry》2011,50(6):2264-2271
A series of coordination polymers with anionic, cationic, and neutral metal-carboxylate frameworks have been synthesized by using a flexible tetrapodal ligand tetrakis[4-(carboxyphenyl)oxamethyl] methane acid (H(4)X). The reactions between divalent transition-metal ions and H(4)X ligands gave [M(3)X(2)]·[NH(2)(CH(3))(2)](2)·8DMA (M = Co (1), Mn (2), Cd(3)) which have anionic metal-carboxylate frameworks with NH(2)(CH(3))(2)(+) cations filled in channels. The reactions of trivalent metal ions Y(III), Dy(III), and In(III) with H(4)X ligands afforded cationic metal-carboxylate frameworks [M(3)X(2)·(NO(3))·(DMA)(2)·(H(2)O)]·5DMA·2H(2)O (M = Y(4), Dy(5)) and [In(2)X·(OH)(2)]·3DMA·6H(2)O (6) with the NO(3)(-) and OH(-) serving as counterions, respectively. Moreover, a neutral metal-carboxylate framework [Pb(2)X·(DMA)(2)]·2DMA (7) can also be isolated from reaction of Pb(II) and H(4)X ligands. The charged metal-carboxylate frameworks 1-5 have selectivity for specific counterions in the reaction system, and compounds 1 and 2 display ion-exchange behavior. Moreover, magnetic property measurements on compounds 1, 2, and 5 indicate that there exists weak antiferromagnetic interactions between magnetic centers in the three compounds.  相似文献   

3.
Radius U  Attner J 《Inorganic chemistry》2004,43(26):8587-8599
The complex (HNEt(3))[MoCl(NCMe)(Calix)] (1), prepared from the reaction of [MoCl(4)(NCMe)(2)] with p-tert-butylcalix[4]arene, H(4)Calix, in the presence of triethylamine, has been used as a source of the d(2)-[Mo(NCMe)(Calix)] fragment. Complex 1 is readily oxidized with PhICl(2) to afford the molybdenum(VI) dichloro complex [MoCl(2)(Calix)] (2). Both complexes are a convenient entry point into molybdenum(VI) and molybdenum(IV) calixarene chemistry. The reaction of 1 with trimethylphosphine and pyridine in the presence of catalytic amounts [Ag(OTf)] led to the formation of neutral d(2) complexes [Mo(PMe(3))(NCMe)(Calix)] (3) and [Mo(NC(5)H(5))(NCMe)(Calix)] (4). The role of the silver salt in the reaction mixture is presumably the oxidation of the chloromolybdate anion of 1 to give a reactive molybdenum(V) species. The same reactions can also be initiated with ferrocenium cations such as [Cp(2)Fe](BF(4)). Without the presence of coordinating ligands, the dimeric complex [[Mo(NCMe)(Calix)](2)] (5) was isolated. The reaction of 1 with Ph(2)CN(2) led to the formation of a metallahydrazone complex [Mo(N(2)CPh(2))(NCMe)(Calix)] (6), in which the diphenyldiazomethane has been formally reduced by two electrons. Molybdenum(VI) complexes were also obtained from reaction of 1 with azobenzene and sodium azide in the presence of catalytic amounts of silver salt. The reaction with azobenzene led under cleavage of the nitrogen nitrogen bond to an imido complex [Mo(NPh)(NCMe)(Calix)] (7), whereas the reaction with sodium azide afforded the mononuclear molybdenum(VI) nitrido complex (HNEt(3))[MoN(Calix)] (8).  相似文献   

4.
A detailed study of the thermal decomposition of the zwitterionic, ring-borylated ansa-chromocene hydrido carbonyl complex [Cr(CO)H{Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (2) is described. This complex is formed in the reaction between [Cr(CO){Me(4)C(2)(C(5)H(4))(2)}] (1) and B(C(6)F(5))(3) in toluene at -78 degrees C. Above -25 degrees C, 2 decomposes to a 50:50 mixture of the low-spin, 17e Cr(III) complexes [Cr(CO){Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (3b) and [Cr(CO){Me(4)C(2)(C(5)H(4))(2)}][HB(C(6)F(5))(3)] (4). Carbon monoxide elimination from 3 b generates high-spin, 15 e [Cr{Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (3a), which coordinates two other electron-donating ligands, such as xylyl isocyanide, PMe3, and PPh(2)Me to form the low-spin, 17 e electron complexes 3c, 3d, and 3e, respectively. High-spin, 15 e [Cr{Me(4)C(2)(C(5)H(4))(2)}][HB(C(6)F(5))(3)] (5) is generated by heating 3 b in toluene at 100 degrees C and periodically removing the evolved CO. Efforts to isolate more than a few X-ray quality crystals of 5 were thwarted by its tendency to form an insoluble precipitate (6) with the same molecular formula. Heating the solution of 5 at 120 degrees C results in its partial conversion (ca. 28 %) to 3a, thereby allowing the formation of 3a in yields as high as 74 % from the reaction between 1 and B(C(6)F(5))(3). The X-ray crystal structures of 3 b-e and 5 are described. Cyclic voltammetry measurements on 3 a-e reveal a dramatic reduction in the redox potentials of the complexes relative to their non-borylated analogues. DFT calculations show that this is due primarily to electrostatic stabilization of the oxidized species by the negatively charged borylate group. EPR and 19F NMR spectroscopy allow 3a to be distinguished from its Lewis base adducts 3 b-e and reveal the relative affinities of different Lewis bases for the chromium.  相似文献   

5.
The title compound, [Ru(2)(O(2)CCF(3))(4)] (1), has been obtained without any exogenous ligands and crystallized by deposition from the gas phase at 170 degrees C. Its crystal structure has been determined for the first time to confirm an infinite chain motif built on axial Ru...O interactions of the diruthenium(II,II) units. The X-ray diffraction studies at variable temperatures showed no phase transitions in the range of 295-100 K but revealed a significant decrease in the volume per atom from 14.2 to 13.3 A(3). This noticeable thermal compressibility effect is discussed in connection with the solid-state packing of the [Ru(2)(O(2)CCF(3))(4)](infinity) chains. The highly electrophilic character of the diruthenium(II,II) units has been shown by the gas-phase deposition reaction of [Ru(2)(O(2)CCF(3))(4)] with an aromatic donor substrate, namely [2.2]paracyclophane (C(16)H(16)). As a result of the above reaction, a new arene adduct [Ru(2)(O(2)CCF(3))(4).C(16)H(16)] (2) has been isolated in crystalline form. It has an extended one-dimensional (1D) chain structure comprised of alternating building units and based on the rare bridging mode of [2.2]paracyclophane, [Ru(2)(O(2)CCF(3))(4).(mu(2)-eta(2):eta(2)-C(16)H(16))](infinity). The magnetic susceptibility of 1 and 2 has been measured and compared in the range of 1.8-300 K. In addition, in the course of synthesis of 1 by the carboxylate exchange reactions, a new mixed-carboxylate diruthenium(II,II) core complex [Ru(2)(O(2)CCF(3))(3)(O(2)CC(2)H(5))] (3), bearing no exogenous ligands, has also been isolated and structurally characterized. It exhibits an interesting polymeric structure in which the ruthenium(II) centers selectively form axial interdimer contacts with the O-atoms of the propionate groups only.  相似文献   

6.
The bidentate ligands N-phenyl-o-phenylenediamine, H(2)((2)L(N)IP), or its analogue 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, ((4)L(N)IP), react with [Co(II)(CH(3)CO(2))(2)]4H(2)O and triethylamine in acetonitrile in the presence of air yielding the square-planar, four-coordinate species [Co((2)L(N))(2)] (1) and [Co((4)L(O))(2)] (4) with an S=1/2 ground state. The corresponding nickel complexes [Ni((4)L(O))(2)] (8) and its cobaltocene reduced form [Co(III)(Cp)(2)][Ni((4)L(O))(2)] (9) have also been synthesized. The five-coordinate species [Co((2)L(N))(2)(tBu-py)] (2) (S=1/2) and its one-electron oxidized forms [Co((2)L(N))(2)(tBu-py)](O(2)CCH(3)) (2 a) or [Co((2)L(N))(2)I] (3) with diamagnetic ground states (S=0) have been prepared, as has the species [Co((4)L(O))(2)(CH(2)CN)] (7). The one-electron reduced form of 4, namely [Co(Cp)(2)][Co((4)L(O))(2)] (5) has been generated through the reduction of 4 with [Co(Cp)(2)]. Complexes 1, 2, 2 a, 3, 4, 5, 7, 8, and 9 have been characterized by X-ray crystallography (100 K). The ligands are non-innocent and may exist as catecholate-like dianions ((2)L(N)IP)(2-), ((4)L(N)IP)(2-) or pi-radical semiquinonate monoanions ((2)L(N)ISQ)(*) (-), ((4)L(N)ISQ)(*) (-) or as neutral benzoquinones ((2) L(N)IBQ)(0), ((4) L(N)IBQ)(0); the spectroscopic oxidation states of the central metal ions vary accordingly. Electronic absorption, magnetic circular dichroism, and EPR spectroscopy, as well as variable temperature magnetic susceptibility measurements have been used to experimentally determine the electronic structures of these complexes. Density functional theoretical (DFT) and correlated ab initio calculation have been performed on the neutral and monoanionic species [Co((1)L(N))(2)](0,-) in order to understand the structural and spectroscopic properties of complexes. It is shown that the corresponding nickel complexes 8 and 9 contain a low-spin nickel(II) ion regardless of the oxidation level of the ligand, whereas for the corresponding cobalt complexes the situation is more complicated. Spectroscopic oxidation states describing a d(6) (Co(III)) or d(7) (Co(II)) electron configuration cannot be unambiguously assigned.  相似文献   

7.
Das O  Paria S  Zangrando E  Paine TK 《Inorganic chemistry》2011,50(22):11375-11383
The mononuclear copper(II) complex [Cu(H(2)L(1))(2)(H(2)O)](ClO(4))(2) (1) (where H(2)L(1) = 1,10-phenanthroline-5,6-dioxime) reacts with copper(II) perchlorate in acetonitrile at ambient conditions in the presence of triethylamine to afford a copper(II) complex, [Cu(L(3))(2)(H(2)O)](ClO(4))(2) (2a), of 1,10-phenanthroline furoxan. A similar complex [Cu(L(3))(2)Cl](ClO(4)) (2) is isolated from the reaction of H(2)L(1) with copper(II) chloride, triethylamine, and sodium perchlorate in acetonitrile. The two-electron oxidation of the vic-dioxime to furoxan is confirmed from the X-ray single crystal structure of 2. An intermediate species, showing an absorption band at 608 nm, is observed at -20 °C during the conversion of 1 to 2a. A similar blue intermediate is formed during the reaction of [Cu(HDMG)(2)] (H(2)DMG = dimethylglyoxime) with ceric ammonium nitrate, but H(2)DMG treated with ceric ammonium nitrate does not form any intermediate. This suggests the involvement of a copper(II) complex in the intermediate step. The intermediate species is also observed during the two-electron oxidation of other vic-dioximes. On the basis of the spectroscopic evidence and the nature of the final products, the intermediate is proposed to be a mononuclear copper(II) complex ligated by a vic-dioxime and a dinitrosoalkene. The dinitrosoalkene is generated upon two-electron oxidation of the dioxime. The transient blue color of the dioxime-copper(II)-dinitrosoalkene complex may be attributed to the ligand-to-ligand charge transfer transition. The intermediate species slowly decays to the corresponding two-electron oxidized form of vic-dioxime, i.e. furoxan and [Cu(CH(3)CN)(4)](ClO(4)). The formation of two isomeric furoxans derived from the reaction of an asymmetric vic-dioxime, hexane-2,3-dioxime, and copper(II) perchlorate supports the involvement of a dinitrosoalkene species in the intermediate step. In addition, the oxidation of 2,9-dimethyl-1,10-phenanthroline-5,6-dioxime (H(2)L(2)) to the corresponding furoxan and subsequent formation of a copper(I) complex [Cu(L(4))(2)](ClO(4)) (3) (where L(4) = 2,9-dimethyl-1,10-phenanthroline furoxan) are discussed.  相似文献   

8.
The synthesis, electrochemical and spectral (UV-vis, 1H NMR, IR, fluorescence) properties as well as thermal behaviors of Al(III) and Zn(II) complexes with the flavonoids quercetin (H2L(1)), rutin (H2L(2)) and galangin (HL(3)) are presented. The complexes may be formulated as [Al2(L(1))(H2O)8]Cl4, [Al3(L(2))2(H2O)12]Cl5, [Al(L(3))(H2O)4]Cl2, [Zn2(L(1))(H2O)4]Cl2, [Zn3(L(2))2(H2O)6]Cl2 and [Zn(L(3))(H2O)2]Cl. The higher fluorescence intensities of the complexes related to the free flavonoids, are attributed to the coordination of the ligands to the small, highly charged Al(III) and Zn(II) ions. The coordination effectively increases the rigidity of the ligand structure and increases the fluorescence quantum yield by reducing the probability of non-radiative energy dissipation process. Antioxidant activities of the compounds were also investigated under an electrochemical point of view. The cyclic voltammetric data show a considerable decrease of the oxidation potentials of the complexes related to that of the free flavonoids. Thus, the flavonoid-metal complexes are more effective antioxidants than the free flavonoids.  相似文献   

9.
The isomorphous polymeric complexes [M(mu-C(6)H(5)NHC(4)O(3))(2)(CH(3)OH)(2)](n) [M = Mn (1), Co (2), Cu (4), Zn (5)] are produced by reacting the anilinosquarate anion with the appropriate metal nitrates in a methanolic solution. Each of these complexes contains the central metal atom in a slightly distorted octahedral environment, with the coordination polyhedron consisting of four mu-1,2-bridging anilinosquarate ligands and two trans-oriented methanols. The polymer chains propagate to form a two-dimensional net of metal centers, with the conformation of the component sheets in the net being controlled by intramolecular N-H...O and O-H...O hydrogen bonds. Under reaction conditions similar to those used in the synthesis of the polymers 1, 2, 4, and 5, the nickel(II) monomer [Ni(C(6)H(5)NHC(4)O(3))(2)(H(2)O)(4)].2H(2)O (3) is produced in which each nickel center is attached to two cis-coordinated anilinosquarate and four aqua ligands in a distorted octahedral arrangement. The ligand conformation in 3 is stabilized by both intra- and intermolecular hydrogen bonding, which results in the formation of a sheet polymer having distinct hydrophobic and hydrophilic surfaces. Magnetochemical analysis of 1 and 4 reveals normal paramagnetic behavior for 1 and a very weak ferromagnetic interaction in 4; the absence of significant magnetic interactions is attributed to the distortion of the C(4) cycle of the anilinosquarate ligand (lower than C(2)(v) symmetry) in these complexes. Reaction of anisolesquarate with M(NO(3))(2).xH(2)O in acetonitrile produced the set of isomorphous salts [M(H(2)O)(6)][CH(3)OC(6)H(5)C(4)O(3)](2) [M = Mn (6), Co (7), Ni (8), Zn (9)]. The anisolesquarate anions in 6-9 are hydrogen bonded to the [M(H(2)O)(6)](2+) ions to form polymer chains, which are further linked by hydrogen bonds to form complex sheets. Complexation of the anisolesquarate ligand was not observed even when other solvents and reaction conditions were employed.  相似文献   

10.
Reaction of the lithium salt Li[1-R-1,2-closo-C(2)B(10)H(10)] with selenium under mild conditions, followed by hydrolysis gave the diselenide compound (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) in contrast to the well-reported mercapto compounds 1-SH-2-R-1,2-closo-C(2)B(10)H(10) obtained using a similar synthetic procedure. Details for the preparation and X-ray structural characterisation of the new compounds (2-Me-1,2-closo-C(2)B(10)H(10))(2)Se, (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) (R = Me, Ph, ) are specified. To further explore the mechanism of the dimerization reaction, the complex [Au(1-Se-2-Me-1,2-closo-C(2)B(10)H(10))(PPh(3))] was synthesized, confirming the existence of the intermediate Li[1-Se-2-R-1,2-closo-C(2)B(10)H(10)] at the early stages of the reaction before selenium oxidation. Theoretical calculations and cyclic voltammetry (CV) studies were carried out to compare the bonding nature of the sulfur and the selenium analog compounds. It was determined that diselenides have a higher tendency to reduce with respect to the disulfides and all chalcogen atoms were found to be positively charged.  相似文献   

11.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

12.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

13.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

14.
Ding E  Liu FC  Liu S  Meyers EA  Shore SG 《Inorganic chemistry》2002,41(21):5329-5335
Cyclic organohydroborate complexes of zirconium monocyclopentadienyl CpZr[(mu-H)(2)BC(5)H(10)](3), 1, and CpZr[(mu-H)(2)BC(8)H(14)](3), 2, were prepared from the reaction of CpZrCl(3) with 3 mol of K[H(2)BC(5)H(10)] and K[H(2)BC(8)H(10)], respectively, in diethyl ether. Compounds 1 and 2 react with the hydride ion abstracting agent B(C(6)F(5))(3) to form the same salt [CpZr(OEt)(OEt(2))(mu-OEt)](2)[HB(C(6)F(5))(3)](2), 5. The complexes CpZr(Cl)[(mu-H)(2)BC(8)H(14)](2), 3, and CpZr(Cl)[(mu-H)(2)BC(8)H(14)](2) [where Cp = C(5)(CH(3))(5)], 4, were prepared from the reaction of CpZrCl(3) and CpZrCl(3) with K[H(2)BC(8)H(10)] in 1:2 molar ratios, respectively. An alpha-hydrogen of a BC(8)H(14) unit forms an agostic interaction with Zr in compound 3 but not in 4. All of the compounds were characterized by single-crystal X-ray diffraction analysis.  相似文献   

15.
Wan L  Zhang C  Xing Y  Li Z  Xing N  Wan L  Shan H 《Inorganic chemistry》2012,51(12):6517-6528
A series of novel bis-pyrazole/pyridine complexes, [Zn(2)(HL(1))(2)(μ(2)-SO(4))](2)·EtOH·H(2)O (1), [Co(2)(HL(1))(2)(μ(2)-SO(4))](2)·2DMF·6H(2)O (2), [Zn(4)(HL(1))(4)(μ(4)-SO(4))][OH](2) (3), [Zn(2)(HL(2))(2)(μ(2)-SO(4))]·2H(2)O (4), [Zn(H(2)L(2))(H(2)O)(2)](SO(4))·0.87H(2)O (5) (H(2)L(1) = 2,6-di-(5-phenyl-1H-pyrazol-3-yl)pyridine, H(2)L(2) = 2,6-di-(5-methyl-1H-pyrazol-3-yl)pyridine), were synthesized hydrothermally from the self-assembly of Zn(II) or Co(II) with different types of bipyrazolyl/pyridine derivative ligands. All the complexes were characterized by elemental analysis, IR and UV-vis spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction. Structural analyses revealed that metal atoms (Zn and Co) in complexes 1-5 are five-coordination modes, forming slightly distorted trigonal bipyramidal geometries. In complexes 1-3, H(2)L(1) ligand connected the two metal centers via the tetradentate fashion, and the same form of connection was found in complex 4 with H(2)L(2) ligand. While in complex 5, H(2)L(2) only connected with one metal center via the tridentate fashion, which was different from those in complexes 1-4. Additionally, there are abundant hydrogen bonding interactions in complexes 1-4. Interestingly, for hydrogen bonding connecting fashions being different, the molecules for the complexes 1 and 4 are held together by the hydrogen bond to form a 1D supramolecular structure, whereas complexes 2 and 3 are a hydrogen bonded dimer. In addition, quantum chemical calculations for 1, 3, and 4, thermal behaviors and photoluminescent properties for 1 and 3-5 were performed and discussed in detail. In the mean time, we found that these complexes had potential catalytic activity for the oxidation reaction of cyclohexane.  相似文献   

16.
Seven new cobalt(II) phosphites, [Co(HPO(3))(C(14)H(14)N(4))(H(2)O)(2)].2H(2)O (1), [Co(HPO(3))(C(22)H(18)N(4))].H(2)O (2), [Co(2)(HPO(3))(2)(C(22)H(18)N(4))(2)H(2)O].H(2)O (3), [Co(2)(HPO(3))(2)(C(12)H(10)N(4))(1.5)H(2)O].1.5H(2)O (4), [Co(HPO(3))(C(14)H(14)N(4))(0.5)].H(2)O (5), [Co(HPO(3))(C(18)H(16)N(4))(0.5)] (6), and [Co(HPO(3))(C(18)H(16)N(4))(0.5)] (7) were synthesized in the presence of 1,2-bis(imidazol-1-ylmethyl)benzene (L1), 1,4-bis(benzimidazol-1-ylmethyl)benzene (L2), 1,3-bis(benzimidazol-1-ylmethyl)benzene (L3), 1,4-bis(1-imidazolyl)benzene (L4), 1,4-bis(imidazol-1-ylmethyl)benzene (L5), 1,4-bis(imidazol-1-ylmethyl)naphthalene (L6), and 1,5-bis(imidazol-1-ylmethyl)naphthalene (L7), respectively, and their structures were determined by X-ray crystallography. Compound 1 is a molecular compound in which two cobalt(II) ions are held together by double mu-O linkages. The inorganic framework of compounds 2 and 3 are composed of vertex-shared CoO(2)N(2)/CoO(3)N(2) and HPO(3) polyhedra that form four rings; these are further linked by an organic ligand to generate 2D sheets. Compounds 4 and 5 both have 1D inorganic structures, with the bifunctional ligands connected to each side of the ladder by coordination bonds to give 2D hybrid sheets. A 3D organically pillared hybrid framework is observed in 6 and 7. In 6, the stacking of the interlayer pillars gives rise to a small hydrophobic channel that extends through the entire structure parallel to the sheets. The temperature-dependent magnetic susceptibility measurements of these compounds show weak interactions between the metal centers, mediated through the mu-O and/or O-P-O linkages.  相似文献   

17.
Reaction of benzaldehyde semicarbazone (HL-R, where H is a dissociable proton and R is a substituent (R = OMe, Me, H, Cl, NO(2)) at the para position of the phenyl ring) with [Ru(PPh(3))(3)Cl(2)] and [Ru(PPh(3))(2)(CO2)Cl2] has afforded complexes of different types. When HL-NO(2) and [Ru(PPh(3))(3)Cl2] react in solution at ambient temperature, trans-[Ru(PPh(3))(2)(L-NO2Cl] is obtained. Its structure determination by X-ray crystallography shows that L-NO2 is coordinated as a tridentate C,N,O-donor ligand. When reaction between HL-NO2 and [Ru(PPh(3))(3)Cl2] is carried out in refluxing ethanol, a more stable cis isomer of [Ru(PPh(3))(2)(L-NO2)Cl] is obtained. The trans isomer can be converted to the cis isomer simply by providing appropriate thermal energy. Slow reaction of HL-R with [Ru(PPh(3))(2)(CO2)Cl2] in solution at ambient temperature yields 5-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes. A structure determination of 5-[Ru(PPh(3))(2)(L-NO2)(CO)Cl] shows that the semicarbazone ligand is coordinated as a bidentate N,O-donor, forming a five-membered chelate ring. When reaction between HL-R and [Ru(PPh(3))(2)(CO2Cl2] is carried out in refluxing ethanol, the 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes are obtained. A structure determination of 4-[Ru(PPh(3))(2)(L-NO2)(CO)Cl] shows that a semicarbazone ligand is bound to ruthenium as a bidentate N,O-donor, forming a four-membered chelate ring. All the complexes are diamagnetic (low-spin d(6), S = 0). The trans- and cis-[Ru(PPh(3))(2)(L-NO2)Cl] complexes undergo chemical transformation in solution. The 5- and 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes show sharp NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry of the 5-[Ru(PPh(3))(2)(L-R)(CO)Cl] and 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes show the Ru(II)-Ru(III) oxidation to be within 0.66-1.07 V. This oxidation potential is found to linearly correlate with the Hammett constant of the substituent R.  相似文献   

18.
The cooperative forces of aurophilic and hydrogen bonding have been used in the self-assembly of phosphine or diphosphine complexes of gold(I) with the thiolate ligands derived from 2-thiobarbituric acid, SC(4)H(4)N(2)O(2), by single or double deprotonation. The reaction of the corresponding gold(I) trifluoroacetate complex with SC(4)H(4)N(2)O(2) gave the complexes [Au(SC(4)H(3)N(2)O(2))(PPh(3))], 1, [(AuSC(4)H(3)N(2)O(2))(2)(micro-LL)], with LL = Ph(2)PCH(2)PPh(2), 2a, Ph(2)P(CH(2))(3)PPh(2), 2b, or Ph(2)PCH=CHPPh(2), 2c, or the cyclic complex [Au(2)(micro-SC(4)H(2)N(2)O(2))(micro-Ph(2)PCH(2)CH(2)PPh(2))], 3. In the case with LL = Ph(2)P(CH(2))(6)PPh(2), the reaction led to loss of the diphosphine ligand to give [Au(6)(SC(4)H(3)N(2)O(2))(6)], 4, a hexagold(I) cluster complex in which each gold(I) center has trigonal AuS(2)N coordination. Structure determinations show that 1 has no aurophilic bonding, 2b, 3, and 4 have intramolecular aurophilic bonding, and 2c has intermolecular aurophilic bonding that contributes to the supramolecular structure. All the complexes undergo supramolecular association through strong NH...O and/or OH...N hydrogen bonding, and complex 3 also takes part in CH...O hydrogen bonding. The supramolecular association leads to formation of interesting polymer, sheet, or network structures, and 4 has a highly porous and stable lattice structure.  相似文献   

19.
A new pentacoordinate ligand based on TPA (tris-(2-pyridylmethyl)amine), namely, N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy(3)H), has been synthesized. The iron(III) complexes of this ligand, namely, [Fe(PaPy(3))(CH(3)CN)](ClO(4))(2) (1), [Fe(PaPy(3))(Cl)]ClO(4) (2), [Fe(PaPy(3))(CN)]ClO(4) (3), and [Fe(PaPy(3))(N(3))]ClO(4) (4), have been isolated and complexes 1-3 have been structurally characterized. These complexes are the first examples of monomeric iron(III) complexes with one carboxamido nitrogen in the first coordination sphere. All four complexes are low spin and exhibit rhombic EPR signals around g = 2. The solvent bound species [Fe(PaPy(3))(CH(3)CN)](ClO(4))(2) reacts with H(2)O(2) in acetonitrile at low temperature to afford [Fe(PaPy(3))(OOH)](+) (g = 2.24, 2.14, 1.96). When cyclohexene is allowed to react with 1/H(2)O(2) at room temperature, a significant amount of cyclohexene oxide is produced along with the allylic oxidation products. Analysis of the oxidation products indicates that the allylic oxidation products arise from a radical-driven autoxidation process while the epoxidation is carried out by a distinctly different oxidant. No epoxidation of cyclohexene is observed with 1/TBHP.  相似文献   

20.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号