首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The single crystal structures of five co-crystals formed by the reaction of different iodide and bromide salts with di- and triiodoperfluorobenzenes (I-ArF) are reported. All of these perfluorocarbon-hydrocarbon systems are heteromeric three-component systems, wherein the weakly coordinating cations favour the formation of naked halides, which function as electron-donors towards the I-ArF modules. The analysis of the crystal structures shows that I?I-ArF, and Br?I-ArF halogen bonds (XBs) control the self-assembly of the obtained supramolecular architectures. 2D and 3D supramolecular networks have been obtained, wherein naked iodide and bromide anions act as tri-, tetra-, or pentadentate nodes. The selected examples demonstrate that I-ArF modules can be particularly robust and reliable tectons for XB-based coordination of halide ions and afford supramolecular architectures in a rational and predictable way.  相似文献   

2.
Treatment of (ArF′)2Zn(OEt2)2 (ArF′ = 4-C6F5C6F4) with 2 equiv. of benzonitrile, 4-(phenyl)benzonitrile, 4-(pyrrolyl)benzonitrile, pyridine, 4-(phenyl)pyridine or 4-(pyrrolyl)pyridine in dichloromethane afforded the corresponding adducts (ArF′)2ZnL2 in near quantitative yield. The 2,2′-bipyridine adduct was prepared similarly. Multinuclear NMR spectroscopy indicated that zinc′s four-coordinate character was maintained in solution. The pyridine complex crystallized from dichloromethane with a solid-state structure free of face-to-face aryl–aryl interactions. In contrast, the 4-(pyrrolyl)pyridine adduct crystallized from both dichloromethane and 1,2-difluorobenzene, with solvent of crystallization, but otherwise essentially identical supramolecular architectures assembled through aryl–aryl synthons, including a face-to-face pentafluorophenyl–pyrrole interaction.  相似文献   

3.
The products of the reaction between the electrophilic alkenylxenonium cation [1-Xe+–C6F9] and the halide anions I?, Br?, Cl? and F? depend on the hardness of the halide anion. With the soft halides I? and Br? Xe(II) is formally displaced by halogen as well in basic MeCN as in superacidic (AHF1), whereas with hard fluoride and chloride no reaction takes place in AHF. In MeCN F? initiates the formation of alkenyl radicals, which abstract hydrogen from the solvent, whereas Cl? exhibits borderline character: RH and RCl formation. Possible reaction paths are discussed. The reactivity of the arylxenonium cation [C6F5Xe]+ in AHF toward halide ions is reported and the relative electrophilicity of the cations [C6F5Xe]+ and [1-Xe+–C6F9] is determined by the competitive reaction with Cl?. In addition the synthesis of cyclohexene 1-CF3–C6F9 from C6F5CF3 and XeF2 is performed and its electrophilicity is compared with that of the aromatic compound C6F5CF3.  相似文献   

4.
The binding of F?, Cl?, Br?, and I? anions by bis‐triazole‐pyridine (BTP) was examined by quantum chemical calculations. There is one H atom on each of the two triazole rings that chelate the halide via H bonds. These H atoms were replaced by halogens Cl, Br, and I, thus substituting H bonds by halogen bonds. I substitution strongly enhances the binding; Br has a smaller effect, and Cl weakens the interaction. The strength of the interaction is sensitive to the overall charge on the BTP, rising as the binding agent becomes singly and then doubly positively charged. The strongest preference of a halide for halogenated as compared to unsubstituted BTP, as much as several orders of magnitude, is observed for I?. Both unsubstituted and I‐substituted BTP could be used to selectively extract F? from a mixture of halides.  相似文献   

5.
Kaur P  Kaur S  Singh K 《Talanta》2011,84(3):947-951
A colorimetric sensor based on dipyrromethane(donor)-7,7′,8,8′-tetracyanoquinodimethane (acceptor) charge-transfer compound depicts excellent selectivity for naked-eye as well as spectrophotometric determination of F even in co-existence with other halide ions (Cl, Br and I). The sensing mechanism is ascribed to the interrupted charge-transfer between donor-acceptor in the presence of F. The sensing on solid support mimics the solution sensing process supported by the reflectance values. Thus this compound has potential for practical applications.  相似文献   

6.
Ni(II), Pd(II), and Cu(II) complexes of N-confused porphyrin (NCP) exhibit anion binding properties through a hydrogen bonding interaction at the peripheral NH of confused pyrrole ring. The binding constants of the tetrakis(pentafluorophenyl)-NCP metal complexes (1-M, M= Ni, Pd, Cu) for various halide anions in CH2C12 increase in the order of F? > Cl? > Br? > I?, respectively. Zwitterionic resonance form of the NCP complexes as well as interactions between halide anions and a pentafluorophenyl group are suggested to be important for efficient anion binding.  相似文献   

7.
The interactions between chemosensor, 2-(2′-hydroxyphenyl)-4-phenylthiazole (1), and different halides (F, Cl, and Br) and NO3 anions have been theoretically investigated at the B3LYP/6-31G(d) level with the BSSE correction. It turned out that the unique selectivity of 1 for F is ascribed to its ability of deprotonating the hydroxy group of host sensor. The intermolecular proton transfer (IPT) causes the colorimetric and fluorescent signaling of 1 for F. The deprotonated complex 1·HF is formed for the deprotonation process of chemosensor. The study of substituent effects suggest that the electron-donating –CH3 and –OCH3 substituted derivatives are expected to be promising candidates for ratiometric fluorescent F chemosensors as well as chromogenic chemosensors, while electron-donating –N(CH3)2 substituted derivative can serve as chromogenic F chemosensors only. Furthermore, the electron-withdrawing (–NO2 and –Br) substituted derivatives can serve as chromogenic F/CH3COO chemosensors.  相似文献   

8.
Jing Wang 《Tetrahedron》2010,66(10):1846-3733
2, 2′-Dihydroxyazobenzene (DHAB) demonstrated high sensitivity and low selectivity toward three anions: CN, CO32−, and HCO3. In the presence of Cu(II), complex DHAB-Cu(II) could give rise to enhanced fluorescence intensity by about 45-fold at 590 nm and visible red-to-reddish orange color change upon the addition of cyanide by utilizing an indirect method, while no changes were observed in the presence of other anions, including F, Cl, Br, I, H2PO4, CH3COO, NO3, CO32− and HCO3, and SO42−, making the DHAB-Cu(II) complex a selective and sensitive cyanide chemosensor.  相似文献   

9.
The confined space inside a self‐assembled cage enhanced halogen bonding (XB) between iodoperfluorocarbons (XB donors) and NO3? anions or H2O molecules (XB acceptors), as confirmed by NMR spectroscopy in solution and by X‐ray crystallography in the solid state. The cavity also bound an XB donor–acceptor pair, C6F3I3 and C6H5NMe2, in a selective pairwise fashion.  相似文献   

10.
Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2‐tBuNOH)C6H4CH2)3N]3? (TriNOx3?), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNOx)thf][BArF4], in which ArF=3,5‐(CF3)2‐C6H3, and [Ce(TriNOx)py][OTf]. A rare complete Ce–halide series, Ce(TriNOx)X, in which X=F?, Cl?, Br?, I?, was also synthesized. The solution chemistry of these complexes was explored through detailed solution‐phase electrochemistry and 1H NMR experiments and showed a unique shift in the ratio of species with inner‐ and outer‐sphere anions with size of the anionic X? group. DFT calculations on the series of calculations corroborated the experimental findings.  相似文献   

11.
The nature of halogen bonding is examined via experimental and computational characterizations of a series of associates between electrophilic bromocarbons R? Br (R? Br=CBr3F, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3CN, etc.) and bromide anions. The [R? Br, Br?] complexes show intense absorption bands in the 200–350 nm range which follow the same Mulliken correlation as those observed for the charge‐transfer associates of bromide anions with common organic π‐acceptors. For a wide range of the associates, intermolecular R? Br???Br? separations decrease and intramolecular C? Br bond lengths increase proportionally to the Br?→R? Br charge transfer; and the energies of R? Br???Br? bonds are correlated with the linear combination of orbital (charge‐transfer) and electrostatic interactions. On the whole, spectral, structural and thermodynamic characteristics of the [R? Br, Br?] complexes indicate that besides electrostatics, the orbital (charge‐transfer) interactions play a vital role in the R? Br???Br? halogen bonding. This indicates that in addition to controlling the geometries of supramolecular assemblies, halogen bonding leads to electronic coupling between interacting species, and thus affects reactivity of halogenated molecules, as well as conducting and magnetic properties of their solid‐state materials.  相似文献   

12.
Utilizing a new 20-membered macrocyclic Schiff base ligand with two coordination sites formed from the [2+2] condensation of 1,3-diaminopropane and benzene-1,3-dicarboxaldehyde in the presence of CuX (X = Cl, Br, I) salts, air-stable dicopper(I) complexes were synthesized in acetonitrile, intramolecularly linked via two halide groups, and characterized by different physico-chemical techniques. The single crystal X-ray diffraction technique indicates these complexes consist of two N2X2 donor sets that have distorted tetrahedral coordination environments around the copper(I) ions. In these halogen-bridged binuclear Cu2LX2 systems the Cu?Cu separation can be controlled, as this distance is reduced on increasing the halide size and hence the X?X repulsion, with the rigidity of the macrocycle playing a significant role.  相似文献   

13.
Interactions of anions with simple aromatic compounds have received growing attention due to their relevancy in various fields. Yet, the anion–π interactions are generally very weak, for example, there is no favorable anion–π interaction for the halide anion F? on the simplest benzene surface unless the H‐atoms are substituted by the highly negatively charged F. In this article, we report a type of particularly strong anion–π interactions by investigating the adsorptions of three halide anions, that is, F?, Cl?, and Br?, on the hydrogenated‐graphene flake using the density functional theory. The anion–π interactions on the graphene flake are shown to be unexpectedly strong compared to those on simple aromatic compounds, for example, the F?‐adsorption energy is as large as 17.5 kcal/mol on a graphene flake (C84H24) and 23.5 kcal/mol in the periodic boundary condition model calculations on a graphene flake C113 (the supercell containing a F? ion and 113 carbon atoms). The unexpectedly large adsorption energies of the halide anions on the graphene flake are ascribed to the effective donor–acceptor interactions between the halide anions and the graphene flake. These findings on the presence of very strong anion–π interactions between halide ions and the graphene flake, which are disclosed for the first time, are hoped to strengthen scientific understanding of the chemical and physical characteristics of the graphene in an electrolyte solution. These favorable interactions of anions with electron‐deficient graphene flakes may be applicable to the design of a new family of neutral anion receptors and detectors. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The potentially pentadentate chelate 2,6-diacetylpyridine-bis(N-methyl-S-methyldithiocarbazate) (Nmedapsme) has been synthesized and structurally characterized by X-ray diffraction. Its reactions with nickel(II) salts did not lead to pentadentate coordinated ligand complexes but ternary complexes of general formula, [Ni(Nmedapsme)(nmesme)L]X·H2O (L = Br, I; X = I, BF4) where Nmedapsme binds as a tridentate and nmesme = N-methyl-S-methyldithiocarbazate. The related ternary nickel(II) complexes of formula, Ni(Nmedapsme)(nmetsc)Br2 has also been prepared and characterized. X-ray crystal structures of [Ni(Nmedapsme)(nmesme)I]I·H2O and [Ni(Nmedapsme)(nmesme)Br]BF4·H2O revealed that, in these complexes, the Nmedapsme ligand acts as a tridentate NNN donor while the distal S-donors are not coordinated. The bidentate (NS) ligand, nmesme coordinates to the nickel(II) ion via the amino nitrogen and the thione sulfur atoms, the sixth coordination site is occupied by an anion. In both complexes, the nickel(II) ion adopts a distorted octahedral configuration. The complex [Cu(nmesme)2(ONO2)]NO3 was obtained from an unsuccessful attempt to complex copper(II) with Nmedapsme. Hydrolysis of the parent Schiff base Nmedapsme occurred during complexation. An X-ray crystallographic structure analysis shows that the complex, [Cu(nmesme)2(ONO2)]NO3 has an approximately square-pyramidal geometry with the two nmesme ligands coordinated to the copper(II) ion as NS bidentate chelating agents via the amino nitrogen and thione sulfur atoms and the fifth coordination position of copper(II) is occupied by a monodentate nitrate ligand.  相似文献   

15.
A new D-π-A dimesitylboron derivative with terminal phenothiazine bridged by fluorenevinyl (PFTB) has been synthesized. It was found that PFTB could selectively recognize fluoride and cyanide anions by naked eyes. Upon addition of F and CN, the color of the solution of PFTB in DCM turned to yellowish-green from yellow and strong green emitting was observed under UV light, while the emission of PFTB in DCM was weak. Moreover, the presence of 10 equiv of tetrabutylammonium salts of other anions, such as Cl, Br, I, AcO, HSO4, H2PO4, could not lead to obvious changes of the UV–vis absorption and the fluorescent emission spectra of PFTB. The detection limits of PFTB towards F and CN were 7.52×10−8 mol/L and 6.12×10−8 mol/L in DCM, respectively. Therefore, the D-π-A type triarylborane derivatives can be used as ‘turn on’ fluorescent sensors for detecting F and CN.  相似文献   

16.
We synthesized a novel colorimetric anion chemosensor bearing benzimidazole motifs as recognition sites in the pods of the receptor. The addition of tetrabutylammonium salts of F or AcO to the solution of receptor caused dramatic color changes from colorless to yellow, which was clearly visible to the naked eye. The receptor showed no significant changes on addition of other anions such as Cl, Br, I, NO3, and H2PO4.  相似文献   

17.
The radiation-induced polymerization of acrylonitrile in the frozen aqueous solutions of various metal chlorides and zinc halides was studied to compare the accelerating effect of metal cations and halogen anions. Among metal chlorides examined, zinc, stannous, manganese, and nickel cations gave greater rates and degrees of polymerization. Of the halogen anions, the rate of polymerization decreased in the order, Br?, CI?, SCN? ? I?, CH3CO2 ?, and the degree of polymerization decreased in the order, Br?, SCN? ? CI? ? I? ? CH3CO2 ?. The increase of the rate and the degree of polymerization was confirmed below the eutectic temperatures of the hydrated metal chlorides and ice. This suggests that the increment of the rate and the degree of polymerization is attributed to formation of hydrated metal chloride-acrylonitrile complexes accompanied by their solidification in eutectic mixtures with ice. The radioactivation analysis of polymers obtained in frozen dilute aqueous zinc bromide solution reveals appreciable contribution of water to generation of initiating species.  相似文献   

18.
Cobalt(II) complexes of the Schiff bases 1,2-(diimino-4-antipyrinyl)ethane (GA) and 4-N-(4-antipyrylmethylidene)aminoantipyrine (AA) have been prepared and characterised by elemental analysis, electrical conductance in non-aqueous solvents, i.r. and electronic spectra, as well as by magnetic susceptibility measurements. The complexes have the general formulae [Co(GA)X]X (X = ClO 4 or NO3 ), [Co(GA)X2] (X = Cl, Br or I), [Co(AA)2]X2 (X = ClO4 , NO3 , Br or I) and [Co(AA)Cl2]. GA acts as a neutral tetradentate ligand, coordinating through both carbonyl oxygens and both azomethine nitrogens. In the perchlorate and nitrate complexes of GA one anion is coordinated in a bidentate fashion, whereas in the halide complexes both anions are coordinated to the metal, generating an octahedral geometry around the Co ion. AA acts as a neutral bidentate ligand, coordinating through the carbonyl oxygen derived from the aldehydic moiety and the azomethine nitrogen. Both anions remain ionic in the perchlorate, nitrate, bromide and iodide complexes of AA, whereas both anions are coordinated to the metal ion in the chloride complex, resulting tetrahedral geometry around the Co ion.  相似文献   

19.
Electronic structure calculation techniques (DFT) have been used to decipher the bonding of the trihalide ligands in a series of homo- and hetero-trihalide Cu(II) Schiff base complexes formulated as [Cu(RdienR)(X)(XY2)] (RdienR = Schiff base; R = furan, thiophene or pyrrol; X = Cl or Br; Y = Cl, Br or I). The association of the incoming Y2 halogen molecule with one of the halide X ligands of the precursor [Cu(RdienR)(X)2] complexes alters their distorted trigonal bipyramidal stereochemistry which is transformed to a distorted square pyramidal geometry. The bonding mechanism between the halogen Y2 molecule and the halide X ligand was thoroughly explored by means of various electronic parameters and charge decomposition analysis techniques. The bond dissociation energy of the Cu–XY2 bond, BDECu–XY2BDECuXY2, was estimated in the range of 61.9–68.4 kcal/mol, while the bond dissociation energy of the X–Y2 bond, BDECu–XY2BDECuXY2, was found in the range of 10.6–12.5 kcal/mol. It was found that the X?Y2 interactions correspond to weak hyperconjugative donor–acceptor interactions between a non-bonding n(X) molecular orbital (donor orbital) localized on the coordinated halide X ligand and an antibonding σ(Y–Y) molecular orbital (acceptor orbital) localized on the Y2 halogen molecule. The n(X) → σ(Y–Y) donor–acceptor interactions are associated with a second-order perturbation stabilization energy, ΔE(2) of 34.5–52.5 kcal/mol. The loose association of the halogen molecules with the coordinated halide ligand renders the [Cu(RdienR)(X)(XY2)] complexes good halogen carrier molecules.  相似文献   

20.
Graphene has recently found applications in a wide range of fields. Density functional calculations show that halide ions can be adsorbed on pristine graphene, but only F? has an appreciable binding energy (?97.0 kJ mol?1). Graphene materials, which are mainly electron donors, can be made strong electron acceptors by edge functionalization with F atoms. The binding strengths of halide ions are greatly enhanced by edge functionalization and show direct proportionality with the degree of functionalization Θ and increased charge transfer. In contrast, the adsorption strengths of metal ions on pristine graphene are clearly superior to those of halide ions but decline substantially with increasing degree of edge functionalization, and for Θ=100 %, the binding energies of ?95.7, ?44.8, and ?25.9 kJ mol?1 that are calculated for Li+, Na+, and K+, respectively, are obviously inferior to that of F? (?186.3 kJ mol?1). Thus, the electronic properties of graphene are fundamentally regulated by edge functionalization, and the preferential adsorption of certain metal ions or anions can be facilely realized by choice of an appropriate degree of functionalization. Adsorbed metal ions and anions behave differently on gradual addition of water molecules, and their binding strengths remain substantial when graphene materials are in the pristine and highly edge functionalized states, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号