首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the active compounds derived from Traditional Chinese Medicine,Celastrol(CSL)had cytotoxicity for human leukemia cancer cells K562 and its multidrug-resistant cell line K562/A02.Here,we introduced cysteamine-modified CdTe QDs as the labeling and drug carrier into CSL research and found that the self-assembly and conjugation of anticancer molecular CSL with the Cys-CdTe QDs could significantly increase the drug’s cytotoxicity for K562 cells.More important,these CSL-Cys-CdTe nanocomposites could overcome the multidrug resistance of K562/A02 cells and efficiently inhibit the cancer cell proliferation by realizing the pH-sensitive responsive release of CSL to cancer cells.The enhanced cytotoxicity was caused by the increase of the G2/M phase arrest for K562/A02 cells as well as for K562 cells.Cys-CdTe QDs can readily bind on the cell plasma membranes and be internalized into cancer cells to trace and detect human leukemia cancer cells in real time.In addition,these Cys-CdTe QDs can facilitate the inhibition of the multidrug resistance of K562/A02 cells and readily induce apoptosis.As a good photosensitizer for the therapy,labeling,and tracing of cancer cells,the combination of CSL with Cys-CdTe QDs can optimize the use of and a new potential therapy method for CSL and yield new tools to explore the mechanisms of active compounds from Traditional Chinese Medicine.  相似文献   

2.
3.
Novel nanocomposites of polylactide (PLA) nanofibers and tetraheptylammonium-capped Fe3O4 magnetic nanoparticles have been prepared and utilized to realize the efficient accumulation of anticancer drug daunorubicin in target cancer cells. The observations of optical microscopy and confocal fluorescence microscopy indicate that the PLA nanofibers and Fe3O4 nanoparticles may contribute to their beneficial effects on intracellular drug uptake of leukemia K562 cell lines in which the efficiently enhanced accumulation of anticancer drug daunorubicin on the membrane of cancer cells could be observed. Meanwhile, the electrochemical detection and the microculture tetrazolium studies were also explored to probe the effect of the relevant nanomaterials on the drug uptake of cancer cells. The results illustrate that the nanocomposites could effectively facilitate the interaction of daunorubicin with leukemia cells and remarkably enhance the permeation and drug uptake of anticancer agents in the cancer cells, which could readily lead to the induction of the cell death of leukemia cells. This observation suggests a new perspective for the targeted therapeutic approaches of cancers.  相似文献   

4.
胶体介孔Si O_2(CMS)是一种具有良好生物相容性、高稳定性和高负载量的药物载体。本文采用带正电荷的CMS作为药物载体负载抗癌药物5F用来抑制鼻咽癌细胞CNE2的生长。实验结果表明,CMS本身对于细胞是无毒的,可通过细胞的内吞作用进入并在细胞中分布。相对于单独的5F,CMS@5F诱导鼻咽癌细胞凋亡的效果明显增强,说明CMS能将5F有效携带至细胞中使其局部浓度增大,促进5F抑制癌细胞生长的效果。  相似文献   

5.
本文合成了高荧光量子产率、单分散性好的水溶性CdTe量子点(quantum dots,QDs),并与α,β,γ,δ-四(1-甲基吡啶嗡-4-基)卟吩对甲苯磺酸盐(TMPyP)组装成QDs-TMPyP纳米复合物,研究了该复合物检测DNA的机理以及肿瘤细胞成像。结果显示,QDs-TMPyP纳米复合物通过光致电子转移机制检测DNA,当CdTe QDs和CdTe QDs-TMPyP浓度低于1.0μmol/L时,HeLa肿瘤细胞存活率达92%以上,表现出低的细胞毒性。0.2μmol/L CdTe QDs-TMPyP作用于肿瘤细胞时,细胞生长状态良好,对细胞内能谱分析发现细胞内含有Cd和Te原子。CdTe QDs-TMPyP复合物比CdTe QDs更易被HeLa细胞摄取,利用量子点荧光成功实现了细胞核内成像,为宫颈癌细胞药物输送和细胞成像的深入研究打下基础。  相似文献   

6.
The systemic toxicity of anticancer drugs regularly restricts the use of conventional chemotherapy to treat cancer. In this study, the limitations overcome by profitably fabricating a multifunctional nanocarrier system to carry the anticancer drug into the specific location of the cancer cells. The polyethylene glycol (PEG) was functionalized in the carboxylated multiwalled carbon nanotubes (MWCNT-COOH) through an esterification reaction (MWCNT-PEG). The targeting ligand of folic acid (FA) was covalently bonded with hyperbranched poly-L-lysine (HBPLL) using adipic acid (AA) as a cross-linking agent. Doxorubicin (DOX), an anticancer drug, was effectively loaded on MWCNT-PEG-AA-HBPLL-FA carrier loading, and in-vitro drug release was investigated by UV–Vis spectrophotometer. The chemical functionalization, morphological properties, crystalline nature, surface charge, and thermal stability of the synthesized materials were studied by FT-IR, FE-SEM, HR-TEM, DLS, and TGA techniques. In-vitro cytotoxicity and anticancer properties of DOX-loaded nanocarrier were studied in human liver cancer (HepG2) cells and human embryonic kidney (HEK293) cells. The activities of caspases (caspase ?3, ?8 & ?9) were analyzed using luminometry. The intrinsic apoptosis pathway proteins (Bcl-2 & BAX) were determined by western blot and RT-PCR analysis. The synthesized DOX-loaded nanocarriers exhibited increased cytotoxicity and apoptosis in liver HepG2 cells. The results suggest that the DOX-loaded nanocarrier possesses strong anticancer properties and could be an applicable and potential drug carrier for liver cancer chemotherapy.  相似文献   

7.
Evodiamine (Evo) is a natural, biologically active plant alkaloid with wide range of pharmacological activities. In the present study Evo-loaded folate-conjugated Pluronic F108 nano-micelles (ENM) is synthesized to enhance the therapeutic efficacy of Evo against cervical cancer. ENM are synthesized, physicochemically characterized and in vitro anticancer activity is performed. The study demonstrates that ENM have nanoscale size (50.33 ± 3.09 nm), monodispersity of 0.122 ± 0.072, with high drug encapsulation efficiency (71.30 ± 3.76%) and controlled drug release at the tumor microenvironment. ENM showed dose-dependent and time-dependent cytotoxicity against HeLa human cervical cancer cells. The results of in vitro anticancer studies demonstrated that ENM have significant anticancer effects and greatly induce apoptosis as compared to pure Evo. The cellular uptake study suggests that increased anticancer activity of ENM is due to the improved intracellular delivery of Evo through overexpressed folate receptors. Overall, the designed ENM can be a potential targeted delivery system for hydrophobic anticancer bioactive compound like Evo.  相似文献   

8.
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells’ surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.  相似文献   

9.
Based on CdTe/CdS quantum dots (CdTe/CdS QDs) fluorescence (FL) reversible control, a new and sensitive FL sensor for determination of anthraquinone (AQ) anticancer drugs (adriamycin and daunorubicin) and herring sperm DNA (hsDNA) was developed. Under the experimental conditions, FL of CdTe/CdS QDs can be effectively quenched by AQ anticancer drugs due to the binding of AQ anticancer drugs on the surface of CdTe/CdS QDs and photoinduced electron transfer (PET) process from CdTe/CdS QDs to AQ anticancer drugs. Addition of hsDNA afterwards brought the restoration of CdTe/CdS QDs FL intensity, as AQ anticancer drugs peeled off from the surface of CdTe/CdS QDs and embedded into hsDNA double helix structure. The liner ranges and the detection limits of FL quenching methods for two AQ anticancer drugs were 0.33-9 μg mL−1 and 0.09 μg mL−1 for ADM and 0.15-9 μg mL−1 and 0.04 μg mL−1 for DNR, respectively. The restored FL intensity was proportional to concentration of hsDNA in the range of 1.38-28 μg mL−1and the detection limit for hsDNA was 0.41 μg mL−1. It was applied to the determination of AQ anticancer drugs in human serum and urine samples with satisfactory results. The reaction mechanism of CdTe/CdS QDs FL reversible control was studied.  相似文献   

10.
《Electrophoresis》2017,38(8):1201-1205
Electrophoretic mobility is a physical phenomenon defining the mobility of charged particles in a solution under applied electric field. As charged biological systems, living cells including both prokaryotes and eukaryotes have been assessed in terms of electrophoretic mobility to decipher their electrochemical structure. Moreover, determination of electrophoretic mobility of living cancer cells have promoted the advance exploration of the nature of the cancer cells and separation of cancer cells from normal ones under applied electric field. However, electrophoretic mobility of drug‐resistant cells has not yet been examined. In the present study, we determined the electrophoretic mobility of drug‐resistant cancer cell lines for both suspension and adherent cells and compared with those of drug‐sensitive counterparts. We showed that resistance to anticancer drugs alters the electrophoretic mobility in a permanent manner, even lasting without any exposure to anticancer agents for a long time period. We also studied the cellular morphologies of adherent cells where the cellular invaginations and protrusions were increased in drug‐resistant adherent cells, which could be direct cause of altered surface charge and electrophoretic mobility as a result. These findings could be helpful in terms of understanding the electrophysiological and physicochemical background of drug resistance in cancer cells and developing systems to separate drug‐sensitive cells from drug‐resistant ones.  相似文献   

11.
Construction of bioresponsive drug‐delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer‐targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf‐NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor‐mediated endocytosis and triggered pH‐dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf‐NGO@HPIP effectively induced cancer‐cell apoptosis through activation of superoxide‐mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug‐delivery nanosystems and their use as efficient anticancer drug carriers.  相似文献   

12.
As a new detection model, the reversible fluorescence “turn-off-on” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many biochemical materials, especially in the researches on the interactions between anticancer drugs. The previous studies, however, mainly focused on simple-structured oligonucleotides and Calf thymus DNA. G-quadruplex, an important target for anti-cancer drug with special secondary structure, has been stimulating increasing research interests. In this paper, we report a new detection method based on the fluorescence “turn-off-on” model with water-soluble ZnCdSe QDs as the fluorescent probe, to analyze the interactions between anticancer drug (N-methyl-4-pyridyl) porphyrin (TMPyP) and nucleic acid, especially the G-quadruplex. The fluorescence of QDs can be quenched by TMPyP via photo-induced electron transfer and fluorescence resonance energy transfer, while on the other hand, the combination between TMPyP and G-quadruplex releases QDs from their quenchers and thus recovers the fluorescence. Most importantly, the fluorescence “turn-off-on” model has been employed, for the first time, to analyze the impacts of special factors on the interaction between TMPyP and G-quadruplex. The excellent selectivity of the system has been verified in the studies of the interactions between TMPyP and different DNAs (double-stranded DNA, single-stranded G-quadruplex, and different types of G-quadruplexes) in Na+ or K+-containing buffer.  相似文献   

13.
A new photo-controlled anticancer drug release system is reported based on the photo-induced electron transfer (PET) between semiconductor quantum dots (QDs) and N-methyl-4-picolinium (NAP) ester 1 under the excitation of visible light.  相似文献   

14.
We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl‐bis‐hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a PtIV pro‐drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.  相似文献   

15.
水溶性量子点荧光探针用于胃癌细胞相关抗原CA242的检测   总被引:5,自引:0,他引:5  
基于量子点荧光探针对胃癌细胞相关抗原CA242进行了检测。首先在水溶液中直接合成性能优良的量子点荧光纳米颗粒,并在其表面成功修饰了羊抗小鼠IgG和聚乙二醇,制得功能化的水溶性量子点荧光探针,并利用探针对胃癌细胞相关抗原CA242进行检测,进一步与传统的基于荧光染料标记的免疫荧光分析方法进行了比较。实验结果表明:该功能化的探针能够有效地识别胃癌细胞相关抗原CA242,并且在光稳定性和灵敏度方面都较传统的基于荧光染料标记的免疫荧光分析方法有明显的改善,从而为CA242的相关检测以及胃癌的诊断与愈后判断提供了新的方法。  相似文献   

16.
Drug resistance is a serious challenge for platinum anticancer drugs. Platinum complexes may get over the drug resistance via a distinct mechanism of action. Cholesterol is a key factor contributing to the drug resistance. Inhibiting cellular cholesterol synthesis and uptake provides an alternative strategy for cancer treatment. Platinum(IV) complexes FP and DFP with fenofibric acid as axial ligand(s) were designed to combat the drug resistance through regulating cholesterol metabolism besides damaging DNA. In addition to producing reactive oxygen species and active platinum(II) species to damage DNA, FP and DFP inhibited cellular cholesterol accumulation, promoted cholesterol efflux, upregulated peroxisome proliferator-activated receptor alpha (PPARα), induced caspase-1 activation and gasdermin D (GSDMD) cleavage, thus leading to both apoptosis and pyroptosis in cancer cells. The reduction of cholesterol significantly relieved the drug resistance of cancer cells. The double-acting mechanism gave the complexes strong anticancer activity in vitro and in vivo, particularly against cisplatin-resistant cancer cells.  相似文献   

17.
孔珺  邱涵  余敏  张兵波 《化学学报》2012,70(6):789-795
亲水性量子点的荧光性能是其作为生物检测探针的一个重要质量指标. 不同结构的量子点在亲水性修饰过程中, 其抵抗荧光淬灭的能力差异较大. 设计与制备具有不同结构和成分的核、核壳量子点, 再通过双亲性高分子对其亲水性改性, 利用荧光光谱监测亲水性修饰过程中的荧光性能变化来度量所合成量子点的光化学稳定性. 实验结果表明,在表面亲水性修饰过程中, 未包覆壳层的裸核量子点其抵抗荧光淬灭的能力最弱; 包覆壳层的核壳量子点, 其抵抗荧光淬灭的能力增强, 且壳层越多, 抵抗能力越强. 壳层的结构和成分直接影响核壳量子点抵抗荧光淬灭的能力, 具有合理晶格匹配的核壳量子点, 其抵抗荧光淬灭的能力较强. 另外, 通过优化设计与制备的核壳量子点经表面亲水性修饰后, 再偶联叶酸, 构建出特异性生物荧光探针, 对乳腺癌细胞进行靶向性标记后, 利用流式细胞仪进行细胞检测分析. 实验结果表明, 通过优化制备的核壳量子点, 亲水性修饰后仍具有很好的荧光性能, 偶联叶酸后具有较好的细胞靶向性.  相似文献   

18.
Nowadays locoregional therapy for cancer treatment can be associated with nanocomposite drug delivery systems. Coated nanoparticles have versatile applications for delivering chemotherapeutic drugs to the targeted part of the body. In this study, a ceramic carrier like nanosized hydroxyapatite (HAp) was synthesized by the in situ precipitation method followed by coating with anticancer drug like doxorubicin (DOX) and polyvinyl alcohol (PVA) polymer. The physicochemical characterization of the prepared polymer-coated drug ceramic nanocomposite (DOX-HAp-PVA) was carried out using Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron spectroscopy, and particle size distribution. Furthermore, the biocompatibility and the anticancer activity of the nanocomposite were explored by MTT assay study. Successfully synthesized DOX-HAp-PVA nanocomposite exhibited a remarkable cytotoxicity toward osteosarcoma cells (MG 63), which may be potentially used as an anticancer agent against osteosarcoma.  相似文献   

19.
Cytotoxic anticancer drugs used in chemotherapy are often antiproliferative agents that preferentially kill rapidly growing cancer cells. Their mechanism relies mainly on the enhanced proliferation rate of cancer cells and is not genuinely selective for cancer cells. Therefore, these drugs can also significantly affect healthy cells. Prodrug therapy provides an alternative approach using a less cytotoxic form of anticancer drug. It involves the synthesis of inactive drug derivatives which are converted to an active form inside the body and, preferably, only at the site of cancerous tissues, thereby reducing adverse drug reaction (ADR) events. Herein, we demonstrate a prodrug activation strategy by utilizing the reaction between aryl azide and endogenous acrolein. Since acrolein is generally overproduced by most cancer cells, we anticipate our strategy as a starting point for further applications in mouse models with various cancers. Furthermore, cancer drugs that have had therapeutic index challenges might be reconsidered for application by utilizing our strategy.

Prodrug activation strategy by utilizing the reaction between aryl azide and endogenous acrolein that is generally overproduced by cancer cells.  相似文献   

20.
Quantum dots (QDs) have the potential to serve as photostable beacons to track siRNA delivery, which is fast becoming an attractive approach to probe gene function in cells. In this paper, we synthesized QD nanoparticles coated with β-cyclodextrin (β-CD) coupled to amino acids with different surface charges (positive, negative, and neutral) through direct ligand-exchange reactions and used them to deliver siRNA. We found that these QDs are diffluent in biological buffer with high colloidal stability and have strong optical emission properties similar to those of tri-n-octylphosphine oxide (TOPO)-coated QDs and also have a long fluorescence lifetime (12.5 ns for L-His-β-CD-coated CdSe/ZnSe QDs). The results of in vitro cytotoxicity and internalization of these modified QDs in normal and cancer cells showed that the β-CD coupled to amino acid outlayers greatly improved the biocompatibility of QDs, and conferred with lower cytotoxicity even at very high concentration. In particular, the L-His-β-CD-coated CdSe/ZnSe QDs presented lower cytotoxicity to these cells (CC(50) value is 180.6±3.4 μg mL(-1) in ECV-304 cells for 48 h). Transmission electron microscope (TEM) images showed that the QDs were localized in vesicles in the cytoplasm of the cells. Furthermore, compared with existing transfection agents, gene-silencing efficiency of the modified QDs was slightly improved for HPV18 E6 gene in HeLa cells by gel electrophoresis analysis. Finally, the unique optical properties of QDs allow visible imaging of siRNA delivery in live cells. Taken together, our study not only provides new insights into the mechanisms of amino acid mediated delivery, but also greatly facilities the monitoring of gene-silencing studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号