首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, an iterative solution method for a fourth‐order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in (SIAM J. Sci. Comput. 2006; 27 :1471–1492), where multigrid was employed as a preconditioner for a Krylov subspace iterative method. The multigrid preconditioner is based on the solution of a second Helmholtz operator with a complex‐valued shift. In particular, we compare preconditioners based on a point‐wise Jacobi smoother with those using an ILU(0) smoother, we compare using the prolongation operator developed by de Zeeuw in (J. Comput. Appl. Math. 1990; 33 :1–27) with interpolation operators based on algebraic multigrid principles, and we compare the performance of the Krylov subspace method Bi‐conjugate gradient stabilized with the recently introduced induced dimension reduction method, IDR(s). These three improvements are combined to yield an efficient solver for heterogeneous problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
卢培培  许学军 《计算数学》2018,40(2):119-134
本文主要讨论求解高波数Helmholtz方程的多水平方法,主要回顾了一些具有代表性的多重网格方法.如Erlangga等人的shifted Laplacian预处理的多重网格法;Elman等提出的修正的多重网格方法;以及我们的基于连续内罚有限元(CIP-FEM)离散代数系统的多水平算法.最后还介绍了求解高波数时谐Maxwell方程的CIP-FEM离散代数系统的多水平算法.  相似文献   

3.
In this paper, we generalize the complex shifted Laplacian preconditioner to the complex shifted Laplacian-PML preconditioner for the Helmholtz equation with perfectly matched layer (Helmholtz-PML equation). The Helmholtz-PML equation is discretized by an optimal 9-point difference scheme, and the preconditioned linear system is solved by the Krylov subspace method, especially by the biconjugate gradient stabilized method (Bi-CGSTAB). The spectral analysis of the linear system is given, and a new matrix-based interpolation operator is proposed for the multigrid method, which is used to approximately invert the preconditioner. The numerical experiments are presented to illustrate the efficiency of the preconditioned Bi-CGSTAB method with the multigrid based on the new interpolation operator, also, numerical results are given for comparing the performance of the new interpolation operator with that of classic bilinear interpolation operator and the one suggested in Erlangga et al. (2006) [10].  相似文献   

4.
<正>The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively.They have been studied widely since then.Recently, Chen and Jin[6]extend the superoptimal preconditioner to a more general case by using the Moore-Penrose inverse.In this paper,we further study some useful properties of the optimal and the generalized superoptimal preconditioners.Several existing results are extended and new properties are developed.  相似文献   

5.
There are two approaches for applying substructuring preconditioner for the linear system corresponding to the discrete Steklov–Poincaré operator arising in the three fields domain decomposition method for elliptic problems. One of them is to apply the preconditioner in a common way, i.e. using an iterative method such as preconditioned conjugate gradient method [S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method, I.A.N.-C.N.R, 2000] and the other one is to apply iterative methods like for instance bi-conjugate gradient method, conjugate gradient square and etc. which are efficient for nonsymmetric systems (the preconditioned system will be nonsymmetric). In this paper, second approach will be followed and extensive numerical tests will be presented which imply that the considered iterative methods are efficient.  相似文献   

6.
The paper introduces the sweeping preconditioner, which is highly efficient for iterative solutions of the variable‐coefficient Helmholtz equation including very‐high‐frequency problems. The first central idea of this novel approach is to construct an approximate factorization of the discretized Helmholtz equation by sweeping the domain layer by layer, starting from an absorbing layer or boundary condition. Given this specific order of factorization, the second central idea is to represent the intermediate matrices in the hierarchical matrix framework. In two dimensions, both the construction and the application of the preconditioners are of linear complexity. The generalized minimal residual method (GMRES) solver with the resulting preconditioner converges in an amazingly small number of iterations, which is essentially independent of the number of unknowns. This approach is also extended to the three‐dimensional case with some success. Numerical results are provided in both two and three dimensions to demonstrate the efficiency of this new approach. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Processes that can be modelled with numerical calculations of acoustic pressure fields include medical and industrial ultrasound, echo sounding, and environmental noise. We present two methods for making these calculations based on Helmholtz equation. The first method is based directly on the complex-valued Helmholtz equation and an algebraic multigrid approximation of the discretized shifted-Laplacian operator; i.e. the damped Helmholtz operator as a preconditioner. The second approach returns to a transient wave equation, and finds the time-periodic solution using a controllability technique. We concentrate on acoustic problems, but our methods can be used for other types of Helmholtz problems as well. Numerical experiments show that the control method takes more CPU time, whereas the shifted-Laplacian method has larger memory requirement.  相似文献   

8.
M.B. van Gijzen  Y.A. Erlangga  C. Vuik 《PAMM》2007,7(1):2020075-2020076
Shifted Laplace preconditioners have attracted considerable attention as a technique to speed up convergence of iterative solution methods for the Helmholtz equation. In this paper we present an approach to determine a near-optimal value for the shift. We illustrate our results with a geophysical test problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A class of conflict-controlled processes [1–3] with additional (“phase” type) restrictions on the state of the evader is considered. A similar unrestricted problem was considered in [4]. Unlike [5, 6] the boundary of the “phase” restrictions is not a “death line” for the evader. Sufficient conditions for the solvability of the pursuit and evasion problems are obtained, which complement a range of well-known results [5–10].  相似文献   

10.
Iterative methods to solve systems of linear equations Ax = b usually require preconditioners M to speed convergence. But the calculation of many preconditioners can be notoriously sequential. The sparse approximate inverse preconditioner (SPAI) has particular potential for high performance computing [1]. We have ported the SPAI algorithm to graphical processing units (GPUs) within NVIDIA's CUSP library [2] for sparse linear algebra. GPUs perform well on dense linear algebra problems where data resides for long periods on the device. Since the underlying minimization problems are independent, they are mapped to separate thread-blocks, and an optimized QR algorithm implemented using NVIDIA's CUBLAS library is employed on each. Traditionally the challenge has been to determine a sparsity pattern Sp( M ) of the preconditioner dynamically [3], which reduces the condition number of MA to a degree where a preconditioned iterative solver such as GMRES becomes computationally viable. Due to the extremely high performance of the GPU, it is possible to consider initial sparsity patterns much denser than have been previously considered. We therefore consider a fixed sparsity patterns to simplify the GPU implementation. We evaluate the performance of the resulting preconditioner on a standard set of sparse matrices, and compare SPAI to other preconditioners. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We consider the iterative solution of linear systems arising from four convection–diffusion model problems: scalar convection–diffusion problem, Stokes problem, Oseen problem and Navier–Stokes problem. We design preconditioners for these model problems that are based on Kronecker product approximations (KPAs). For this we first identify explicit Kronecker product structure of the coefficient matrices, in particular for the convection term. For the latter three model cases, the coefficient matrices have a 2 × 2 block structure, where each block is a Kronecker product or a summation of several Kronecker products. We then use this structure to design a block diagonal preconditioner, a block triangular preconditioner and a constraint preconditioner. Numerical experiments show the efficiency of the three KPA preconditioners, and in particular of the constraint preconditioner that usually outperforms the other two. This can be explained by the relationship that exists between these three preconditioners: the constraint preconditioner can be regarded as a modification of the block triangular preconditioner, which at its turn is a modification of the block diagonal preconditioner based on the cell Reynolds number. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
An efficient preconditioner is developed for solving the Helmholtz problem in both high and low frequency (wavenumber) regimes. The preconditioner is based on hierarchical unknowns on nested grids, known as incremental unknowns (IU). The motivation for the IU preconditioner is provided by an eigenvalue analysis of a simplified Helmholtz problem. The performance of our preconditioner is tested on the iterative solution of two‐dimensional electromagnetic scattering problems. When compared with other well‐known methods, our technique is shown to often provide a better numerical efficacy and, most importantly, to be more robust. Moreover, for the best performance, the number of IU levels used in the preconditioner should be designed for the coarsest grid to have roughly two points per linear wavelength. This result is consistent with the conventional sampling criteria for wave phenomena in contrast with existing IU applications for solving the Laplace/Poisson problem, where the coarsest grid comprises just one interior point. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

13.
Shuai Lu  Boxi Xu 《Applicable analysis》2013,92(9):1761-1771
In this article, local unique continuation on a line for solutions of the Helmholtz equation is discussed. The fundamental solution of the exterior problem for the Helmholtz equation have a logarithmic singularity which behaves similar to those of the interior problem for the Laplace equation in two dimension. A Hölder-type conditional stability estimate of the proposed exterior problem for the Helmholtz equation is obtained by adopting the complex extension method in Cheng and Yamamoto [J. Cheng and M. Yamamoto, Unique continuation on a line for harmonic functions, Inverse Probl. 14 (1998), pp. 869–882]. Finally, a regularization scheme based on the collocation method is compatible with the Hölder-type stability estimate provided that the line does not intersect the boundary of the domain for both the Laplace and the Helmholtz equations.  相似文献   

14.
Given a general matrix splitting A=M-N where M is nonsingular, a new factorization scheme in terms of factorized and splitting matrices is given using the Sherman-Morrison formula. Theoretical analysis shows that the factorization can give an LDU decomposition of A under some special choices. We propose and implement a class of preconditioners based on this factorization combining with dropping rules. A number of numerical experiments from discrete convection diffusion equation and some practical problems show that the new preconditioner is efficient, and is comparable to existing preconditioners in term of storage requirement and computational cost.  相似文献   

15.
In this work, we describe and analyze two models that were recently proposed for modeling generalized von Kármán plates and generalized Marguerre–von Kármán shallow shells.

First, we briefly review the “classical” von Kármán and Marguerre–von Kármán equations, their physical meaning, and their mathematical justification. We then consider the more general situation where only a portion of the lateral face of a nonlinearly elastic plate or shallow shell is subjected to boundary conditions of von Kármán type, while the remaining portion is free. Using techniques from formal asymptotic analysis, we obtain in each case a two-dimensional boundary value problem that is analogous to, but is more general than, the classical equations.

In particular, it is remarkable that the boundary conditions for the Airy function can still be determined on the entire boundary of the nonlinearly elastic plate or shallow shell solely from the data.

Following recent joint works, we then reduce these more general equations to a single “cubic” operator equation, which generalizes an equation introduced by Berger and Fife, and whose sole unknown is the vertical displacement of the shell. We next adapt an elegant compactness method due to Lions for establishing the existence of a solution to this operator equation.  相似文献   


16.
We propose a new preconditioner DASP (discrete approximate spectral preconditioner), based on the existing well-known preconditioners and our computational experience. Parallel preconditioning strategies for large scale partial difference equation systems arising from partial differential equations are investigated. Numerical results are given to show the efficiency and effectiveness of the new preconditioners for both model problems and real applications in petroleum reservoir simulation.  相似文献   

17.
For large-scale image deconvolution problems, the iterative regularization methods can be favorable alternatives to the direct methods. We analyze preconditioners for regularizing gradient-type iterations applied to problems with 2D band Toeplitz coefficient matrix. For problems having separable and positive definite matrices, the fit preconditioner we have introduced in a previous paper has been shown to be effective in conjunction with CG. The cost of this preconditioner is of O(n2) operations per iteration, where n2 is the pixels number of the image, whereas the cost of the circulant preconditioners commonly used for this type of problems is of O(n2 log n) operations per iteration. In this paper the extension of the fit preconditioner to more general cases is proposed: namely the nonseparable positive definite case and the symmetric indefinite case. The major difficulty encountered in this extension concerns the factorization phase, where a further approximation is required. Three approximate factorizations are proposed. The preconditioners thus obtained have still a cost of O(n2) operations per iteration. A numerical experimentation shows that the fit preconditioners are competitive with the regularizing Chan preconditioner, both in the regularizing efficiency and the computational cost. AMS subject classification (2000) 65F10, 65F22.Received October 2003. Accepted December 2004. Communicated by Lars Eldén.  相似文献   

18.
Two kinds of parallel preconditioners for the solution of large sparse linear systems which arise from the 2-D 5-point finite difference discretization of a convection-diffusion equation are introduced. The preconditioners are based on the SSOR or MILU preconditioners and can be implemented on parallel computers with distributed memories. One is the block preconditioner, in which the interface components of the coefficient matrix between blocks are ignored to attain parallelism in the forward-backward substitutions. The other is the modified block preconditioner, in which the block preconditioner is modified by taking the interface components into account. The effect of these preconditioners on the convergence of preconditioned iterative methods and timing results on the parallel computer (Cenju) are presented.  相似文献   

19.
Consider an operator equation G(u,λ) = 0 where λ is a real parameter. Suppose 0 is a “simple” eigenvalue of the Fréchet derivative Gu at (u0, λ0). We give a hierarchy of conditions which completely determines the solution structure of the operator equation. It will be shown that multiple bifurcation as well as simple bifurcation can occur. This extends the standard bifurcation theory from a simple eigenvalue in which only one branch bifurcates. We also discuss limit point bifurcations. Applications to semilinear elliptic equations and the homotopy method for the matrix eigenvalue problem are also given.  相似文献   

20.
In this paper, we consider preconditioners for generalized saddle point systems with a nonsymmetric coefficient matrix. A constraint preconditioner for this systems is constructed, and some spectral properties of the preconditioned matrix are given. Our results extend the corresponding ones in [3] and [4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号