首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
代庆芳  蔚喜军 《计算数学》2003,25(4):407-422
In this paper, two numerical methods are developed for solving one-dimensionl compressible ELder equations by the RKDG finite element method.The schemesare obtained based on an important relation between the Boltzmann equation andthe ELder equations.The schemes have the TVD-like property under the uniform meshes.Several numerical results also present the performance of the schemes.  相似文献   

2.
This paper attempts to develop kinetic flux vector splitting(KFVS)for the Euler equa-tions with general pressure laws.It is well known that the gas distribution function forthe local equilibrium state plays an important role in the construction of the gas-kineticschemes.To recover the Euler equations with a general equation of state(EOS),a newlocal equilibrium distribution is introduced with two parameters of temperature approx-imation decided uniquely by macroscopic variables.Utilizing the well-known connectionthat the Euler equations of motion are the moments of the Boltzmann equation wheneverthe velocity distribution function is a local equilibrium state,a class of high resolutionMUSCL-type KFVS schemes are presented to approximate the Euler equations of gas dy-namics with a general EOS.The schemes are finally applied to several test problems for ageneral EOS.In comparison with the exact solutions,our schemes give correct location andmore accurate resolution of discontinuities.The extension of our idea to multidimensionalcase is natural.  相似文献   

3.
In this paper, we present some results of a study, specifically within the framework of symplectic geometry, of difference schemes for numerical solution of the linear Hamiltonian systems. We generalize the Cayley transform with which we can get different types of symplectic schemes. These schemes are various generalizations of the Euler centered scheme. They preserve all the invariant first integrals of the linear Hamiltonian systems.  相似文献   

4.
Difference schemes of the Euler and trapezoidal types for the numerical solution of the initial-value problem for linear differential-algebraic equations are examined. These schemes are analyzed for model examples, and their superiority over the familiar first- and second-order implicit methods is shown. Conditions for the convergence of the proposed algorithms are formulated.  相似文献   

5.
We consider initial-boundary-value problems for systems of conservation laws and design entropy stable finite difference schemes to approximate them. The schemes are shown to be entropy stable for a large class of systems that are equipped with a symmetric splitting, derived from the entropy formulation. Numerical examples for the Euler equations of gas dynamics are presented to illustrate the robust performance of the proposed method.  相似文献   

6.
We investigate the approximation by space and time discretization of quasi linear evolution equations driven by nuclear or space time white noise. An error bound for the implicit Euler, the explicit Euler, and the Crank–Nicholson scheme is given and the stability of the schemes are considered. Lastly we give some examples of different space approximation, i.e., we consider approximation by eigenfunction, finite differences and wavelets.  相似文献   

7.
We study the rate of convergence of some recursive procedures based on some “exact” or “approximate” Euler schemes which converge to the invariant measure of an ergodic SDE driven by a Lévy process. The main interest of this work is to compare the rates induced by “exact” and “approximate” Euler schemes. In our main result, we show that replacing the small jumps by a Brownian component in the approximate case preserves the rate induced by the exact Euler scheme for a large class of Lévy processes.  相似文献   

8.
We first propose a new class of finite volume schemes for solving the 1D Euler equations. Applicable to arbitrary equations of state, these schemes are based on a Lagrange-remap approach and are high-order accurate in both space and time in the nonlinear regime. A multidimensional extension on nD Cartesian grids is then proposed, using a high-order dimensional splitting technique. Numerical results up to 6th-order are provided.  相似文献   

9.
A general framework is proposed for the derivation and analysis of flux-splittings and the corresponding flux-splitting schemes for systems of conservation laws endowed with a strictly convex entropy. The approach leads to several new properties of the existing flux-splittings and to a method for the construction of entropy flux-splittings for general situations. A large family of genuine entropy flux-splittings is derived for several significant examples: the scalar conservation laws, the p-system, and the Euler system of isentropic gas dynamics. In particular, for the isentropic Euler system, we obtain a family of splittings that satisfy the entropy inequality associated with the mechanical energy. For this system, it is proved that there exists a unique genuine entropy flux-splitting that satisfies all of the entropy inequalities, which is also the unique diagonalizable splitting. This splitting can be also derived by the so-called kinetic formulation. Simple and useful difference schemes are derived from the flux-splittings for hyperbolic systems. Such entropy flux-splitting schemes are shown to satisfy a discrete cell entropy inequality. For the diagonalizable splitting schemes, an a priori L estimate is provided by applying the principle of bounded invariant regions. The convergence of entropy flux-splitting schemes is proved for the 2 × 2 systems of conservation laws and the isentropic Euler system. ©1995 John Wiley & Sons, Inc.  相似文献   

10.
In this paper, we design stable and accurate numerical schemes for conservation laws with stiff source terms. A prime example and the main motivation for our study is the reactive Euler equations of gas dynamics. Furthermore, we consider widely studied scalar model equations. We device one-step IMEX (implicit-explicit) schemes for these equations that treats the convection terms explicitly and the source terms implicitly.For the non-linear scalar equation, we use a novel choice of initial data for the resulting Newton solver and obtain correct propagation speeds, even in the difficult case of rarefaction initial data. For the reactive Euler equations, we choose the numerical diffusion suitably in order to obtain correct wave speeds on under-resolved meshes.We prove that our implicit-explicit scheme converges in the scalar case and present a large number of numerical experiments to validate our scheme in both the scalar case as well as the case of reactive Euler equations.Furthermore, we discuss fundamental differences between the reactive Euler equations and the scalar model equation that must be accounted for when designing a scheme.  相似文献   

11.
The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211–219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput 62:119–131, 1994) also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations in Zhang and Shu (J Comput Phys 229:8918–8934, 2010) and Zhang et?al. (J Scientific Comput, in press), to enforce the minimum entropy principle for high order finite volume and discontinuous Galerkin (DG) schemes.  相似文献   

12.
This paper discusses the relationship between canonical maps and generating functions and gives the general Hamilton-Jacobi theory for time-independent Hamiltonian systems. Based on this theory, the general method — the generating function method — of the construction of difference schemes for Hamiltonian systems is considered. The transition of such difference schemes from one time-step to the next is canonical. So they are called the canonical difference schemes. The well known Euler centered scheme is a canonical difference scheme. Its higher order canonical generalisations and other families of canonical difference schemes are given. The construction method proposed in the paper is also applicable to time-dependent Hamiltonian systems.  相似文献   

13.
In this paper the technique of subtracting out singularities is used to derive explicit and implicit product Euler schemes with order one convergence and a product trapezoidal scheme with order two convergence for a system of Volterra integral equations with a weakly singular kernel. The convergence proofs of the numerical schemes are presented; these are nonstandard since the nonlinear function involved in the integral equation system does not satisfy a global Lipschitz condition.  相似文献   

14.
Summary. We design numerical schemes for systems of conservation laws with boundary conditions. These schemes are based on relaxation approximations taking the form of discrete BGK models with kinetic boundary conditions. The resulting schemes are Riemann solver free and easily extendable to higher order in time or in space. For scalar equations convergence is proved. We show numerical examples, including solutions of Euler equations.Mathematics Subject Classification (2000): 65M06, 65M12, 76M20Correspondence to: D. Aregba-Driollet  相似文献   

15.
We propose a new scheme for the long time approximation of a diffusion when the drift vector field is not globally Lipschitz. Under this assumption, a regular explicit Euler scheme–with constant or decreasing step–may explode and implicit Euler schemes are CPU-time expensive. The algorithm we introduce is explicit and we prove that any weak limit of the weighted empirical measures of this scheme is a stationary distribution of the stochastic differential equation. Several examples are presented including gradient dissipative systems and Hamiltonian dissipative systems.  相似文献   

16.
In this paper, we discuss the conditions for the Euler midpoint rule to be volume-preserving and present Euler type explicit volume-preserving schemes. Some numerical applications to the system defining rigid body motion and the ABC flow are also given.  相似文献   

17.
1.IntroductionWeconsiderthefollowingmean--fieldequationofmotionforthedynamicIsingmodelonaperiodiclatticeA:whereAdenotesthelatticeofZdwithNdsitesdefinedbyA:~{a:a=Zaie',i=1alEZ,15al5N}with{e'}beingthestandardunitvectorsofZd.WesaythatAisad-dimensionallattice.WedenotebyVAtheNddimensionalspaceoflatticevectorsv=(v.).6A*satisfyingv.+Nei=va'Hereu~(u.)..AandbadenotestheexpectationdrofthespinatsiteaofthelatticeandA*isdefinedby{a:a~Za.e',alEZ}.i=1TheNdxNdsymmetricmatrixAisdefinedby3forvEVAF'o…  相似文献   

18.
Initial and initial boundary value problems for first order partial functional differential equations are considered. Explicit difference schemes of the Euler type and implicit difference methods are investigated. The following theoretical aspects of the methods are presented. Sufficient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that assumptions on the regularity of given functions are the same for both the methods. It is shown that conditions on the mesh for explicit difference schemes are more restrictive than suitable assumptions for implicit methods. There are implicit difference schemes which are convergent and corresponding explicit difference methods are not convergent. Error estimates for both the methods are construted.  相似文献   

19.
This paper presents two differential systems, involving first and second order derivatives of problem functions, respectively, for solving equality-constrained optimization problems. Local minimizers to the optimization problems are proved to be asymptotically stable equilibrium points of the two differential systems. First, the Euler discrete schemes with constant stepsizes for the two differential systems are presented and their convergence theorems are demonstrated. Second, we construct algorithms in which directions are computed by these two systems and the stepsizes are generated by Armijo line search to solve the original equality-constrained optimization problem. The constructed algorithms and the Runge–Kutta method are employed to solve the Euler discrete schemes and the differential equation systems, respectively. We prove that the discrete scheme based on the differential equation system with the second order information has the locally quadratic convergence rate under the local Lipschitz condition. The numerical results given here show that Runge–Kutta method has better stability and higher precision and the numerical method based on the differential equation system with the second information is faster than the other one.  相似文献   

20.
General two-dimensional autonomous dynamical systems and their standard numerical discretizations are considered. Nonstandard stability-preserving finite-difference schemes based on the explicit and implicit Euler and the second-order Runge–Kutta methods are designed and analyzed. Their elementary stability is established theoretically and is also supported by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号