首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
2.
A method for simulating processes of metal sputtering by ion bombardment in the form of large neutral and charged clusters with a number of atoms N≥5 based on simple physical assumptions and in fair agreement with experiment is suggested. As an example, the ionization degrees and ionization coefficients, as well as the relative cluster yields, are calculated as a function of the number of atoms in clusters of different metals (Ag, Nb, and Ta) bombarded by singly charged Ar+1 and Au−1 ions. A fluctuation mechanism of charge state formation for large clusters, which describes the dependence of the charge state distributions on cluster size and target temperature, is developed.  相似文献   

3.
A theory of the ion sputtering of metal in the form of excited neutral and charged clusters with their subsequent fragmentation to the stable state is developed. This theory is based on simple physical assumptions and agrees well with experiments. The results are presented in the form of practical formulas. The overall yields of stable neutral and charged clusters of silver, indium, and niobium are calculated as an example.  相似文献   

4.
We present structure calculations of neutral and singly ionized Mg clusters of up to 30 atoms, as well as Na clusters of up to 10 atoms. The calculations have been performed using density functional theory (DFT) within the local (spin-)density approximation, ion cores are described by pseudopotentials. We have utilized a new algorithm for solving the Kohn-Sham equations that is formulated entirely in coordinate space and, thus, permits straightforward control of the spatial resolution. Our numerical method is particularly suitable for modern parallel computer architectures; we have thus been able to combine an unrestricted simulated annealing procedure with electronic structure calculations of high spatial resolution, corresponding to a plane-wave cutoff of 954 eV for Mg. We report the geometric structures of the resulting ground-state configurations and a few low-lying isomers. The energetics and HOMO-LUMO gaps of the ground-state configurations are carefully examined and related to their stability properties. No evidence for a non-metal to metal transition in neutral and positively charged Mg clusters is found in the regime of ion numbers examined here.  相似文献   

5.
A theory is developed for the ion sputtering of metals resulting in the formation of excited neutral and charged clusters with their subsequent fragmentation to a stable state. The effect fragmentation has on the kinetic spectra and charge state of clusters is considered. The results are presented in the form of convenient formulas. Calculations for the kinetic spectra of polyatomic clusters of niobium and silver are given as examples.  相似文献   

6.
张安超  孙路石  向军  郭培红  刘志超  苏胜 《物理学报》2011,60(7):73103-073103
采用密度泛函理论中的广义梯度近似对Hg与小团簇Au qn (n=1—6, q=0, +1, -1)的相互作用进行了系统研究. 结果表明,除Au5+,-团簇外,前线分子轨道理论可以成功预测大部分Au n Hg q 复合物的最低能量结构. Aun团簇对Hg的吸附受团簇尺寸大小和团簇所携带电荷的影 关键词: 密度泛函理论 汞 金团簇 吸附能  相似文献   

7.
The structure and stability of small neutral and positively charged zinc oxide (ZnO) n clusters (n = 2−9) have been studied within the density functional theory. For n ≤ 7, the most stable clusters are shown to be flat rings; for n = 8, 9, the clusters are mainly three-dimensional cage structures. The energies and main channels of fragmentation of the clusters have been determined. It has been found that the fragmentation of the charged clusters with n > 6 occurs predominantly with formation of a (ZnO)4+ ion, which explains the available mass spectrometric data on ionization of the zinc oxide clusters by electron impact.  相似文献   

8.
Matveev  V. I.  Kochkin  S. A. 《Technical Physics》2004,49(3):345-351

A method for evaluating the energy spectra and temperature dependences of the yield of neutral and charged clusters that consist of N≥5 atoms and are produced by ion bombardment of metals is proposed. The results are presented in the form of simple formulas. Theoretical energy spectra of clusters emitted as a result of bombarding niobium, tantalum, and iron targets by atomic ions of gold or xenon and temperature dependences of the yield of silver clusters produced by bombarding the targets with xenon ions are compared with experimental data.

  相似文献   

9.
A model is proposed for the ion-induced sputtering of a metal in the form of large clusters with a number of atoms N⩾5. The model is based on simple physical assumptions and is consistent with experiment. As an example, calculations are made of the relative cluster yield as a function of the number of atoms in the cluster as a result of the bombardment of various metals by singly charged 5 keV argon ions. A comparison is made with experimental data. Zh. Tekh. Fiz. 69, 64–68 (March 1999)  相似文献   

10.
First-principles calculations based on density functional theory are performed to study the magnetic and electronic properties of X-doped 8×7 MgO nanotube clusters (X=C, N). The N dopant easily occupies the O-site at the edge of MgO nanotube, embracing neutral or charged defect state, and induces notable magnetization in N-doped MgO tubular cluster. More important, this p-electron magnetization can be significantly modulated as the charged state of the defect changes. Regarding C doping, impurity atom readily substitute the Mg atom located at the edge of MgO nanotube to form neutral defect, and net magnetization is found to be zero. The calculated electron densities of states show that the O-site N doping at the edge greatly narrows or even destroys band-gap, while it enlarges somewhat for the Mg-site C doping at the edge. The results are likely to stimulate a promising class of materials for various applications ranging from spintronics to magneto-optics.  相似文献   

11.
Highly charged sodium clusters produced in collisions between neutral clusters and multiply charged ions are formed within a large range of temperatures and fissilities, and identified by means of a high-resolution reflectron-type time-of-flight mass spectrometer ( m/m 14000). The limit of stability of these charged clusters is experimentally investigated, and the time-of-flight spectra are compared with theoretical spectra based on Monte-Carlo simulations. The results indicate that the maximum fissility (X) of stable clusters is approaching the Rayleigh limit (X = 1) for larger clusters sizes. It is mainly limited by the initial neutral cluster temperature ( T 100 K) and the energy transfer in the ionizing collision. In addition, the comparison between the measured and simulated spectra suggests for high cluster charges a multi-fragmentation process, in which most of charge is emitted, creating low charged residual cluster ions.  相似文献   

12.
A defect model for NiO is developed and is fit to the electrical-conductivity data [26], the deviation-from-stoichiometry data [7], and the cation-self-diffusion data [14, 17]. This model involves neutral, singly charged, and doubly charged nickel vacancies and charge-compensating electron holes. Both singly and doubly charged cation vacancies are required to explain the data; neutral cation vacancies (if present) are not required by the present data. However, the jump frequencies of the two types of charged cation vacancies are generally not equal; the doubly charged cation vacancy moves with the smaller activation enthalpy. The defect data are quantitatively consistent with the chemical-diffusion data [26] and with a correlation factor?v = 0.75.  相似文献   

13.
Under generalized gradient approximation (GGA), geometrical structure, size dependence of stability and electronic properties of neutral Mgn, singly charged cationic Mgn+ and singly charged anionic Mgn clusters consisting of up to 11 atoms have been studied systematically by ab initio method within the norm-conserving pseudopotentials. In addition to the electronic shell effects, the “closed” geometrical structure can also enhance the stability of the clusters. The enhanced stability for the cationic cluster resulted from the removal of an antibonding electron is larger than that for the anionic cluster by promoting an extra electron to occupy a bonding orbital. The density of states (DOS) shows the increase in interaction between valence and unoccupied states leads to an increase in s-p hybridization.  相似文献   

14.
The structural, energy, and optical properties of charged and neutral molecular clusters (MCs) of silver Agn (n = 2–5) have been simulated within the density functional theory (DFT). It has been shown that the electronic absorption spectrum of neutral MCs is shifted toward lower energies compared to the charged ones. The strengths of the oscillators of neutral MCs are mainly larger than the ones of charged MCs. A comparison of the simulation results with the previously obtained experimental ones for glasses with silver MCs has been carried out.  相似文献   

15.
The spectra of deep inner-core excited mixed rare-gas clusters were recorded by using electron ion coincidence (EICO) and multi-hit momentum imaging (MHMI) techniques. The EICO spectra for Ar99Kr1 clusters reveal that singly charged ions are emitted from the inner-core excited clusters in addition to the multiple charged ions. The dependence of the EICO spectra on photon energy and cluster size suggests that the holes created through vacancy cascade on the krypton atoms are transferred to the surrounding atoms, and that the singly charged ions are the primary product of the krypton photoabsorption. Charge localization is suggested for the inner-core excited mixed rare-gas clusters from the analysis of the EICO peak width. The MHMI measurements give us direct evidence for the strong charge migration from X-ray absorbing atoms to surrounding atoms. The photon energy dependence of the PSD image for fragment ions suggests that the momentum of the fragment ions depends on the number of charges generated by the vacancy cascade.  相似文献   

16.
Singly charged gold cluster ions from a laser-vaporization source are transferred into a Penning trap and subjected to electron bombardment. The charged reaction products are analyzed by time-of-flight mass spectrometry after axial ejection from the trap. They include singly charged cluster fragments, multiply charged clusters of the initial size and multiply charged cluster fragments. The multiply charged clusters are selected and further investigated by collision induced dissociation. Two types of reactions can be distinguished: Dissociation into several charged fragments and evaporation of neutrals. Several features of multiply charged clusters relevant for future investigations are reviewed.This work comprises part of the dissertation of J. Ziegler.  相似文献   

17.
The stability of neutral, singly and multiply ionized silicon clusters, (N = 2-7, M = 0, , , ), has been investigated using an ab initio density functional method. We show that the fragmentation effect significantly affects the structure of mass-spectra of multiply ionized silicon clusters. For clusters, the clusters with a large fragmentation energy are found to correspond to the high peaks at N = 4 and 6 in mass-spectra. For clusters, a peak at N = 5 in mass-spectra has been predicted to be especially high. Received: 9 June 1997 / Revised: 8 January 1998 / Accepted: 25 February 1998  相似文献   

18.
史顺平  张传瑜  赵晓凤  李侠  闫珉  蒋刚 《中国物理 B》2017,26(8):83103-083103
Density functional theory(DFT) with the B3 LYP method and the SDD basis set is selected to investigate In_nNi,In_nNi~-, and In_nNi~+ (n = 1–14) clusters. For neutral and charged systems, several isomers and different multiplicities are studied with the aim to confirm the most stable structures. The structural evolution of neutral, cationic, and anionic In_nNi clusters, which favors the three-dimensional structures for n = 3–14. The main configurations of the In_nNi isomers are not affected by adding or removing an electron, the order of their stabilities is also nearly not affected. The obtained binding energy exhibits that the Ni-doped In_(13) cluster is the most stable species of all different sized clusters. The calculated fragmentation energy and the second-order energy difference as a function of the cluster size exhibit a pronounced even–odd alternation phenomenon. The electronic properties including energy gap(E_g), adiabatic electron affinity(AEA), vertical electron detachment energy(VDE), adiabatic ionization potential energy(AIP), and vertical ionization potential energy(VIP) are studied. The total magnetic moments show that the different magnetic moments depend on the number of the In atoms for charged In_nNi. Additionally, the natural population analysis of In_nNi~((0,±1)clusters is also discussed.  相似文献   

19.
The luminescence spectra of silicate glasses with silver introduced by ion exchange have been investigated. It is shown that silver introduced into glass by ion exchange exists not only in the form of ions, but also as neutral atoms and charged and neutral molecular clusters, which provide intense luminescence in the visible spectral range. Cerium ions in glass facilitate the formation of neutral molecular silver clusters, due to which the luminescence intensity increases. It is shown that Ag n -Ce x+ complexes can be formed in glass containing cerium ions and neutral molecular silver clusters.  相似文献   

20.
Starting from the Weisskopf theory decay rates for the evaporation of cluster atoms from hot liquid alkali metal clusters are derived. The crucial input quantity is the level density which is determined from empirical properties of the bulk, namely from the specific heat and the thermal expansion coefficient. The resulting rate expression is compared with decay rate formulas given by Engelking, Klots and Gspann. Furthermore, critical (appearance) sizes of multiply charged clusters are calculated by equating the rates for neutral monomer and light charged particle emission. Also shrinking and cooling rates of large hot clusters are determined by treating multiple emission of cluster atoms, thus establishing a time scale for the decay of clusters theoretically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号