首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, Liu et al. [Commun. Theor. Phys. 57 (2012) 583] proposed a quantum private comparison protocol based on entanglement swapping of Bell states, which aims to securely compare the equality of two participants' information with the help of a semi-honest third party (TP). However, the present study points out there is a fatal loophole in Liu et al.'s protocol, and TP can make Bell-basis measurement to know all the participants' secret inputs without being detected. To fix the problem, a simple solution, which uses one-time eavesdropper checking with decoy photons instead of twice eavesdropper checking with Bell states, is demonstrated. Compared with the original protocol, it not only reduces the Bell states consumption but also simplifies the protocol steps.  相似文献   

2.
Recently, Liu et al. [Commun. Theor. Phys. 57(2012) 583] proposed a quantum private comparison protocol based on entanglement swapping of Bell states, which aims to securely compare the equality of two participants' information with the help of a semi-honest third party(TP). However, the present study points out there is a fatal loophole in Liu et al.'s protocol, and TP can make Bell-basis measurement to know all the participants' secret inputs without being detected. To fix the problem, a simple solution, which uses one-time eavesdropper checking with decoy photons instead of twice eavesdropper checking with Bell states, is demonstrated. Compared with the original protocol,it not only reduces the Bell states consumption but also simplifies the protocol steps.  相似文献   

3.
Recently, Liu et al. proposed a quantum private comparison (QPC) based on Bell entangled states (Liu et al. in Commun. Theor. Phys. 57(4): 583, 2012). This paper points out a security loophole in Liu et al.’s protocol, in which the third party can disclose the private information of both users. In addition, an improvement is proposed to avoid the loophole.  相似文献   

4.
Recently, by using the BB84 quantum key distribution (QKD) protocol, Sun et al. put forward two quantum private comparison (QPC) protocols with a semi-honest third party (TP) and a malicious TP, respectively (Sun et al., Quantum Inf. Process. 14, 2125–2133, 2015). In this paper, we absorb the concept of semi-quantumness suggested by Boyer et al. (Phys. Rev. Lett. 99(14), 140501, 2007 and Phys. Rev. A 79(3), 032341, 2009) into Sun et al.’s QPC protocols and construct two corresponding SQPC protocols. The common interesting feature of the proposed SQPC protocols is that apart from the establishment of shared keys between different participants, the rest parts of the protocols are completely classical. The output correctness and the security of the proposed SQPC protocols are validated. Compared with the present SQPC protocols, the advantages of the proposed SQPC protocols lies in the following aspects: on the aspect of quantum resource, they employ single photons rather than Bell entangled states; with respect to quantum measurement for TP, they need single-photon measurements rather than Bell state measurements; as for quantum entanglement swapping, they do not need it at all; and the second proposed SQPC protocol takes effect under a malicious TP and makes TP know neither the genuine contents of secret inputs nor the comparison result.  相似文献   

5.
Recently, Gao et al.'s [Commun. Theor. Phys. 52 (2009) 421] multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was enhanced by Hwang et al. [Commun. Theor. Phys. 56 (2011) 79]. The improved protocol removes some unnecessary unitary operations, devices, and transmissions by the technique of decoy single photons and careful modification. However, in this paper, we investigate the security of the improved protocol and find it is insecure. The eavesdropper can steal all Alice's secret information. Furthermore, a feasible modification to remedy the security loophole is put forward. Our improved protocol provides a basic method to modify a kind of MQSS protocols which cannot resist the collusion attack.  相似文献   

6.

Recently, Ye et al. (Int. J. Theor. Phys. 56, 1517–1529, 2017) proposed a quantum private comparison (QPC) protocol based on five-qubit entanglement state. Two parties can verify that their secret information is equal or not with the help of the semi-honest third party (TP). However, in this paper we will point out the Ye et al.’s initial protocol is not safe under a special participant attack. That is a malicious participant can get the other party’s secret input information illegally under the forgery attack. Furthermore, we give two possible improvement protocols, which can perform this protocol secure against this kind of attack.

  相似文献   

7.

A two-party quantum private comparison (QPC) protocol is constructed with χ-type entangled states in this paper. The proposed protocol employs a semi-honest third party (TP) that is allowed to misbehave on his own but cannot conspire with the adversary. The proposed protocol need perform Bell basis measurements and single-particle measurements but neither unitary operations nor quantum entanglement swapping technology. The proposed protocol possesses good security toward both the outside attack and the participant attack. TP only knows the comparison result of the private information from two parties in the proposed protocol.

  相似文献   

8.
Recently, Gao et al.'s [Commun. Theor. Phys. 52 (2009) 421] multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was enhanced by Hwang et al. [Commun. Theor. Phys. 56 (2011) 79]. The improved protocol removes some unnecessary unitary operations, devices, and transmissions by the technique of decoy single photons and careful modification. However, in this paper, we investigate the security of the improved protocol and find it is insecure. The eavesdropper can steal all Alice's secret information. Furthermore, a feasible modification to remedy the security loophole is put forward. Our improved protocol provides a basic method to modify a kind of MQSS protocols which cannot resist the collusion attack.  相似文献   

9.
Recently, Li et al. (Int. J. Theor. Phys. 55, 1710–1718, 2016) proposed a Quantum Private Comparison (QPC) protocol based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State. Two parties can check whether their secret information is equal or not with the help of the semi-honest third party (TP). However in this paper, we will point out this kind of semi-honest TP is unreasonable. If we relax the constraint of the semi-honest TP, by using the fake signal attack, TP can know the whole secret information illegally. At last, we give our improvement, which can make this protocol more secure.  相似文献   

10.
In this paper, a two-party quantum private comparison (QPC) protocol is proposed by using five-qubit entangled states as the quantum resource. The proposed protocol needs the help from a semi-honest third party (TP), who is allowed to misbehave on his own but not allowed to conspire with the adversary including the dishonest user. The proposed protocol has the following distinct features: (1) One five-qubit entangled state can be used to achieve the equality comparison of two bits in each round of comparison; (2) Neither unitary operations nor quantum entanglement swapping technology is needed, both of which may consume expensive quantum devices; (3) Only Bell measurements and single-particle measurements are employed, both of which can be realized with current quantum technologies; (4) The security toward both the outside attack and the participant attack can be guaranteed; (5) The private information of two parties is not leaked out to TP.  相似文献   

11.
Recently, Wu et al(2019 Int. J. Theor. Phys. 58 1854) found a serious information leakage problem in Ye and Ji's quantum private comparison protocol(2017 Int. J. Theor. Phys. 561517), that is, a malicious participant can steal another's secret data without being detected through an active attack means. In this paper, we show that Wu et al's active attack is also effective for several other existing protocols, including the ones proposed by Ji et al and Zha et al(2016 Commun. Theor. Phys. 65 711; 2018 Int. J. Theor. Phys. 57 3874). In addition,we propose what a passive attack means, which is different from Wu et al's active attack in that the malicious participant can easily steal another's secret data only by using his own secret data after finishing the protocol, instead of stealing the data by forging identities when executing the protocol. Furthermore, we find that several other existing quantum private comparison protocols also have such an information leakage problem. In response to the problem, we propose a simple solution, which is more efficient than the ones proposed by Wu et al, because it does not consume additional classical and quantum resources.  相似文献   

12.
The security of quantum secure direct communication by entangled qutrits and entanglement swapping [Y.B. Zhan et al., Opt. Commun. 282 (2009) 4633] is analyzed. It is shown that an eavesdropper can obtain all the secret without being found by a simple intercept-and-resend attack. Finally, a possible improvement to resist this attack is proposed.  相似文献   

13.
Recently, Jia et al. proposed the quantum private comparison protocol with the genuine four-particle entangled states (Jia et al., Int. J. Theor. Phys. 51(4), 1187–1194 (2012)). Jia et al. claimed that in this protocol, TP cannot obtain Alice and Bob’s secrets and only knows their comparison result. However, in this paper, we demonstrate that if TP is a genuine semi-honest third party, he can totally obtain Alice and Bob’s secrets by launching a particular intercept-resend-measure attack. After suggesting the intercept-resend-measure attack strategy from TP first, we put forward one corresponding improvement to prevent this attack.  相似文献   

14.
Xi Huang 《中国物理 B》2022,31(4):40303-040303
By using swap test, a quantum private comparison (QPC) protocol of arbitrary single qubit states with a semi-honest third party is proposed. The semi-honest third party (TP) is required to help two participants perform the comparison. She can record intermediate results and do some calculations in the whole process of the protocol execution, but she cannot conspire with any of participants. In the process of comparison, the TP cannot get two participants' private information except the comparison results. According to the security analysis, the proposed protocol can resist both outsider attacks and participants' attacks. Compared with the existing QPC protocols, the proposed one does not require any entanglement swapping technology, but it can compare two participants' qubits by performing swap test, which is easier to implement with current technology. Meanwhile, the proposed protocol can compare secret integers. It encodes secret integers into the amplitude of quantum state rather than transfer them as binary representations, and the encoded quantum state is compared by performing the swap test. Additionally, the proposed QPC protocol is extended to the QPC of arbitrary single qubit states by using multi-qubit swap test.  相似文献   

15.
Yuan et al. (Int. J. Theor. Phys. 51:3443, 2012) proposed a multiparty quantum secret sharing protocol using Bell states and continuous variable operations. Zhang and Qin (Int. J. Theor. Phys. 52:3953, 2013) showed that their protocol is not secure. In this paper, we will give an improvement of Yuan et al. protocol. Our improved protocol can stand against not only Zhang et al. attack strategies, but also the other ones efficiently.  相似文献   

16.
Using the highly entangled six-qubit genuine state we present a quantum private comparison (QPC) protocol, which enables two users to compare the equality of two bits of their secrets in every round comparison with the assistance of a semi-honest third party (TP). The proposed protocol needs neither unitary operations nor quantum entanglement swapping technology, both of which may consume expensive quantum devices. Single particle measurements and Bell-basis measurements, which are easy to implement with current technologies, are employed by two users and TP in the proposed protocol, respectively. The proposed protocol can withstand all kinds of outside attacks and participant attacks. Moreover, none of information about the two users’ private secrets and the comparison result is leaked out to TP.  相似文献   

17.
A controlled quantum secure direct communication protocol (Zhang et al. Int. J. Theor. Phys. 48:2971–2976, 2009) by using four particle cluster states was proposed recently. The aim of Zhang et al. was that the successful realization of communication between Alice and Bob needed the cooperation of a controller, Charlie. However, we show that the controller Charlie’s role could be excluded unknowingly. Using fake entangled particles and Bell measurement, the dishonest Bob who generates the initial signals can elicit Alice’s secret message without the permission of Charlie. A possible improvement of the protocol is proposed.  相似文献   

18.

Recently, Liu (Int J Theor Phys: pp.1–6, 2018) pointed out that Song et al.’s multiparty quantum direct secret sharing protocol (Int J Theor Phys: 57, 1559, 2018) suffers from several attacks and then an improved quantum direct secret sharing protocol was hence proposed. However, this study shows that Liu’s protocol still suffers from an intercept-resend attack. To solve this problem, a modification is proposed here.

  相似文献   

19.
Jason Lin 《Optics Communications》2011,284(5):1468-1471
Recently, Shi et al. proposed a multiparty quantum secret sharing (QSS) using Bell states and Bell measurements. In their protocol, for sharing two classical bits, all parties have to possess two photons after entanglement swapping. This paper proposes an enhancement of Shi et al.'s protocol. Based on the idea that all parties (except dealer) possess two photons to share two classical bits, the qubit efficiency has further improved by removing the photons the dealer has to hold in Shi et al.'s protocol. Moreover, an insider attack is also prevented in the proposed scheme.  相似文献   

20.
Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is extended to the two-mode case, which gives the decomposition of the entangled Fresnel operator, corresponding to the decomposition of ray transfer matrix [A, B, C, D]. The EFO can unify those optical operators in two-mode case. Various decompositions of EFO into the exponential canonical operators are obtained. The entangled state representation is useful in the research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号