首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Effect of initial conditions on the near-field development of a round jet   总被引:3,自引:0,他引:3  
This paper examines the effects of using different grids, placed at the nozzle exit plane, on the subsequent development of a subsonic round air jet. Modifications to the initial development of the jet are achieved in a passive manner by placing different grids at the nozzle exit plane. Time-averaged statistics of the velocity, including spectra, are combined with a numerical linear instability investigation. The grids suppress the initial shear layer instability whereas they damp the jet column instability. As a result, the streamwise decay and radial spreading of the perturbed jets are reduced. The instability analysis yields realistic values for the fastest growing instability frequency but incorrect growth rates.  相似文献   

2.
超弹性材料的不稳定性问题   总被引:1,自引:0,他引:1  
任九生  程昌钧 《力学进展》2009,39(5):566-575
超弹性材料是一类性能独特、不可替代且有广泛工程应用的高分子材料,对其独特的材料不稳定性问题的研究极大地推动了连续介质力学有限变形理论和超弹性理论的发展.综述了超弹性材料中的材料不稳定性问题的研究成果和最新进展,包括Rivlin立方块问题、薄壁球壳和薄壁圆筒的内压膨胀问题、圆柱的扭转问题、块体的表面不稳定性问题、空穴的生成、增长和闭合问题等.阐述了这类材料中各类非线性不稳定性问题的特点、问题的求解、主要结果及今后进一步的研究方向等.   相似文献   

3.
A review of publications on the Rayleigh–Taylor instability arising during high-velocity implosion of liners is presented. Papers that describe experimental testing and numerical simulation of the development and suppression of this instability are also considered.  相似文献   

4.
A linear instability analysis was performed in order to investigate which variables have a significant effect on the onset of the instability of an unsaturated viscoplastic material subjected to water infiltration. It was found that the onset of the growing instability of the material system mainly depends on the specific moisture capacity, the suction, and the hardening parameter. Then, in order to simulate the water infiltration process of a one-dimensional unsaturated soil column, a multiphase coupled elasto-viscoplastic finite element analysis was performed based on the theory of porous media. The results of the numerical simulations are discussed with respect to the effect of the specific moisture capacity and the initial suction on the development of volumetric strain. We found that rapid transitions from unsaturated to saturated states and higher levels of initial suction lead to the contractive behavior of the material and instability. The instability detected by the numerical results is consistent with the theoretical results obtained through the linear instability analysis.  相似文献   

5.
沿平板下落薄膜流动的研究综述   总被引:3,自引:0,他引:3  
沿平板下落薄膜流动的时空演化一直是流体力学中一个相当活跃的研究领域.全面回顾了下落薄膜从长波近似方程到积分边界层方程, 从线性稳定性分析到弱非线性分析, 从首次失稳到二次失稳以及从有限振幅计算到直接数值模拟的发展历程, 总结了下落薄膜已有的理论结果和数值结果.此外,还介绍了沿加热平板下落的薄膜流动的最新研究进展, 概述了其它类型下落薄膜的研究情况.   相似文献   

6.
The stability characteristics of an ultra-thin layer of a viscous liquid flowing down a cylindrical fibre are investigated by a linear theory. The film with the thickness less than 100 nm is driven by an external force and under the influence of the van der Waals forces. The results show that, when the relative film thickness decreases, the curvature of the fibre depresses the development of the linear perturbations, whereas the van der Waals forces promote the instabilities. This competition results in a non-monotonous dependence of the growth rate on the relative film thickness. The critical curves are also obtained to describe the transition from the absolute instability to the convective instability, indicating that the van der Waals forces can enlarge the absolutely unstable region. Furthermore, the surface tension can cause the development of the absolute instability, whereas the external force has an opposite effect.  相似文献   

7.
The stability characteristics of an ultra-thin layer of a viscous liquid flowing down a cylindrical fibre are investigated by a linear theory. The film with the thickness less than 100 nm is driven by an external force and under the influence of the van der Waals forces. The results show that, when the relative film thickness decreases, the curvature of the fibre depresses the development of the linear perturbations, whereas the van der Waals forces promote the instabilities. This competition results in a non-monotonous dependence of the growth rate on the relative film thickness. The critical curves are also obtained to describe the transition from the absolute instability to the convective instability, indicating that the van der Waals forces can enlarge the absolutely unstable region. Furthermore, the surface tension can cause the development of the absolute instability, whereas the external force has an opposite effect.  相似文献   

8.
陈达  宁建国  李健 《力学学报》2021,53(10):2865-2879
气相爆轰波在周期性非均匀介质中的起爆, 稳态传播和失效机制都极为复杂, 很多物理机制尚不明确, 是当前爆轰物理领域研究的热点和难点. 本文使用反应欧拉方程和两步化学反应模型对爆轰波在非均匀介质中的传播机理进行了数值模拟研究, 非均匀性由横向周期性分布的温度扰动体现, 重点分析不同波长、不同幅度的温度扰动对波阵面波系结构的影响. 计算结果表明, ZND爆轰波在温度扰动下向胞格爆轰波的转变主要受制于两种竞争性因素: 一是爆轰波内在的不稳定性; 二是温度扰动的波长和幅度, 前者是内因, 后者是外因. 温度扰动的存在抑制横波的发展, 延迟了ZND爆轰波向胞格爆轰波的演化, 并且内在不稳定性的增加可以减慢这种延迟现象. 这说明, 温度扰动可以在一定的范围内抑制胞格不稳定性的发展, 但是不能够终止这一过程. 温度的不连续性使得爆轰波阵面更为扭曲, 并在横波附近存在较弱的三波点结构, 即温度扰动可增加爆轰波固有的不稳定性, 改变爆轰波阵面的传播机理. 幅值较大的人工温度扰动可抑制爆轰波的传播和爆轰波自身的不稳定性. 爆轰波阵面胞格结构的形成取决于温度扰动与其自身的不稳定性.   相似文献   

9.
Using the detailed numerical simulation data of primary atomization, the liquid surface instability development that leads to atomization is characterized. The numerical results are compared with a theoretical analysis of liquid–gas layer for a parameter range close to high-speed Diesel jet fuel injection. For intermittent and short-duration Diesel injection, the aerodynamic surface interaction and transient head formation play an important role. The present numerical setting excludes nozzle disturbances to primarily investigate this interfacial instability mechanism and the role of jet head. The first disturbed area is the jet head region, and the generated disturbances are fed into the upstream region through the gas phase. This leads to the viscous boundary layer instability development on the liquid jet core. By temporal tracking of surface pattern development including the phase velocity and stability regime and by the visualization of vortex structures near the boundary layer region, it is suggested that the instability mode is the Tollmien–Schlichting (TS) mode similar to the turbulent transition of solid-wall boundary layer. It is also demonstrated that the jet head and the liquid core play an interacting role, thus the jet head cannot be neglected in Diesel injection. In this study, this type of boundary layer instability has been demonstrated as a possible mechanism of primary atomization, especially for high-speed straight liquid jets. The effect of nozzle turbulence is a challenging but important issue, and it should be examined in the future.  相似文献   

10.
The development of traveling secondary perturbations on streamwise structures in the swept wing boundary layer is investigated when the perturbations are excited by a periodic blowing-suction through an orifice on the model surface. The streamwise structures were generated by a roughness glued to the model surface. Qualitative and quantitative results on the development of the flow instability are obtained.  相似文献   

11.
Dean instability for Newtonian fluids in laminar secondary flow in 180° curved channels was studied experimentally and numerically. The numerical study used Fluent CFD code to solve the Navier–Stokes equations, focusing on flow development conditions and the parameters influencing Dean instability. An accurate criterion based on the radial gradient of the axial velocity was defined that allows detection of the instability threshold, and this criterion is used to optimize the grid geometry. The effects on Dean instability of the curvature ratio (from 5.5 to 20) and aspect ratio (from 0.5 to 12) are studied. In particular, we show that the critical value of the Dean number decreases with the increasing duct curvature ratio. The variation of the critical Dean number with duct aspect ratio is less regular.In the experimental study, flows were visualized in several tangential positions of a 180° curved channel with aspect ratio 8 and curvature ratio 10. The flow is hydrodynamically developed at the entrance to the curved channel. The critical Dean number is detected and the development of secondary flow vortices by additional counter-rotating vortex pairs is observed. A diagram of different critical Dean numbers is established.  相似文献   

12.
The viscous fingering of miscible flow displacements in a homogeneous porous media is examined to determine the effects of an anisotropic dispersion tensor on the development of the instability. In particular, the role of velocity-dependent transverse and longitudinal dispersions is investigated through linear stability analysis and nonlinear simulations. It is found that an isotropic velocity-dependent dispersion tensor does not affect substantially the development of the instability and effectively has the same effect as molecular diffusion. On the other hand, an anisotropic velocity-dependent dispersion tensor results in different instability characteristics and more intricate finger structures. It is shown that anisotropic dispersion has profound effects on the development of the fingers and on the mechanisms of interactions between neighboring fingers. The development of the new finger structures is explained by examining the velocity field and characterized qualitatively through a spectral analysis of the average concentration and an analysis of the variations of the sweep efficiency and relative contact area.  相似文献   

13.
The viscous and conductivity effects on the instability of a rapidly expanding material interface produced by a spherical shock tube are investigated through the employment of a high-order WENO scheme. The instability is influenced by various mechanisms, which include (a) classical Rayleigh–Taylor (RT) effects, (b) Bell–Plesset or geometry/curvature effects, (c) the effects of impulsively accelerating the interface, (d) compressibility effects, (e) finite thickness effects, and (f) viscous effects. Henceforth, the present instability studied is more appropriately referred to as non-classical RT instability to distinguish it from classical RT instability. The linear regime is examined and the development of the viscous three-dimensional perturbations is obtained by solving a one-dimensional system of partial differential equations. Numerical simulations are performed to illustrate the viscous effects on the growth of the disturbances for various conditions. The inviscid analysis does not show the existence of a maximum amplification rate. The present viscous analysis, however, shows that the growth rate increases with increasing the wave number, but there exists a peak wavenumber beyond which the growth rate decreases with increasing the wave number due to viscous effects.  相似文献   

14.
An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M = 3.08) while its shape is still sinusoidal and before the Kelvin-Helmholtz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability.PACS: 52.35.Py, 52.35.Tc  相似文献   

15.
The effect of internal damage creation on the load carrying capacity of a beam is studied. Time independent relations are postulated for the development of strain and damage with increasing net stress. The resulting relations between load and deformation for a Bernoulli-Navier beam lamina with rectangular cross-section are then derived. A state of instability is shown to exist, characterized by unlimited rate of increase in deformation and damage with load. An instability locus in the plane of bending moment and normal force is defined. The shape of this locus is studied for varying parameters in the deformation and damage laws.  相似文献   

16.
The problem of convective flow through a porous medium in a plane rectangular vessel with a linear temperature profile steadily maintained on the boundary is considered. Single-parameter families of steady-state regimes resulting from the existence of cosymmetry of the corresponding differential equations are investigated using the Galerkin method. The onset and development of instability on these families and the characteristics of convective regimes as functions of the seepage Rayleigh number and the rectangle side ratio are studied. It is shown that the number of regimes which lose stability, the instability type, the number of convective rollers developed, and the heat transfer depend significantly on the vessel geometry. Several bifurcations of single-parameter families of steady-state regimes are identified and investigated.  相似文献   

17.
Self–induced excitation of periodic nonlinear waves on a viscoelastic coating interacting with a turbulent boundary layer of an incompressible flow is studied. The response of the flow to multiwave excitation of the coating surface is determined in the approximation of small slopes. A system of equations is obtained for complex amplitudes of multiple harmonics of a slow (divergent) wave resulting from the development of hydroelastic instability on a coating with large losses. It is shown that three–wave resonant relations between the harmonics lead to the development of explosive instability, which is stabilized due to the deformation of the mean (Sover the wave period) shear flow in the boundary layer. Conditions of soft and hard excitation of divergent waves are determined. Based on the calculations performed, qualitative features of excitation of divergent waves in known experiments are explained.  相似文献   

18.
The development of convective instability in a two-layer system of miscible fluids placed in a narrow vertical gap has been studied theoretically and experimentally. The upper and lower layers are formed with aqueous solutions of acid and base, respectively. When the layers are brought into contact, the frontal neutralization reaction begins. We have found experimentally a new type of convective instability, which is characterized by the spatial localization and the periodicity of the structure observed for the first time in the miscible systems. We have tested a number of different acid–base systems and have found a similar patterning there. In our opinion, it may indicate that the discovered effect is of a general nature and should be taken into account in reaction–diffusion–convection problems as another tool with which the reaction can govern the movement of the reacting fluids. We have shown that, at least in one case (aqueous solutions of nitric acid and sodium hydroxide), a new type of instability called as the concentration-dependent diffusion convection is responsible for the onset of the fluid flow. It arises when the diffusion coefficients of species are different and depend on their concentrations. This type of instability can be attributed to a variety of double-diffusion convection. A mathematical model of the new phenomenon has been developed using the system of reaction–diffusion–convection equations written in the Hele–Shaw approximation. It is shown that the instability can be reproduced in the numerical experiment if only one takes into account the concentration dependence of the diffusion coefficients of the reagents. The dynamics of the base state, its linear stability and nonlinear development of the instability are presented. It is also shown that by varying the concentration of acid in the upper layer one can achieve the occurrence of chemo-convective solitary cell in the bulk of an almost immobile fluid. Good agreement between the experimental data and the results of numerical simulations is observed.  相似文献   

19.
任春平  邹志利 《力学学报》2012,44(1):96-105
目前对沿岸流不稳定研究比较成熟的理论基础是线性不稳定理论,该理论假定增长率最大的不稳定模式决定着沿岸流的波动特性,但实验分析结果表明对有些情况下该假定难以解释实验中观测到的情况.利用沿岸流不稳定运动的多模式理论分析了实验中观测到的情况.结果表明沿岸流速度剖面对于沿岸流不稳定运动模式影响很大,特别是速度剖面的变化会导致不稳定模式出现多个模式的情况,即增长率曲线出现多于两个峰的情况.用解析的速度剖面分析了速度剖面前剪切和后剪切同时变化及单独变化对于沿岸流不稳定多模式运动的影响.结果表明对于坡度为1:100的平直斜坡的情况用前剪切不稳定理论可以解释其观测到的现象.   相似文献   

20.
The present paper investigates a numerical study of flow instabilities in transient mixed convection in a vertical pipe. At the entrance of the pipe, the flow is suddenly submitted to a temperature step. The convection heat transfer on the outer surface of the pipe is taken into account. The governing equations are solved using a finite difference explicit scheme. The numerical results show that the time development of streamlines and isotherms is strongly dependent on the inlet temperature steps. For positive temperature steps, the unsteady vortex is significant in the vicinity of the wall and the reversal flow appears below the wave instability. In the case of negative temperature steps and especially for the low Reynolds number, the reversal flow appears on top of the wave instability. During the transient, the apparition of the vortical structures along the wall leads to the wall boundary layer instability. This phenomenon is due to the transient mixed convection flows. The temperature step effects on the heat transfer of the flow are presented in our paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号