首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave
Authors:P?B?Puranik  J?G?Oakley  M?H?Anderson  Email author" target="_blank">R?BonazzaEmail author
Institution:(1) Department of Engineering Physics, University of Wisconsin, 1500 Engineering Drive, WI 53706 Madison, USA
Abstract:An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M = 3.08) while its shape is still sinusoidal and before the Kelvin-Helmholtz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability.PACS: 52.35.Py, 52.35.Tc
Keywords:Richtmyer-Meshkov  shock-interface interactions  interfacial instabilities  turbulent mixing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号