首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new solvent-induced Cu(II) complexes with the chemical formulae [{Cu(HL)(CH3OH)}2Cu] · CH3OH (1), [{(Cu(HL))2(CH3CH2OH)2}Cu] (2), [{CuL(H2O)}2Cu2] · 2CH3CH2CH2OH (3) and [{(Cu(HL))2(CH3CH2CH2CH2OH)2}Cu] (4), where H4L = 6,6′-dihydroxy-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenol, have been synthesized and characterized by elemental analyses, 1H NMR, FT-IR, UV–Vis spectra, TG-DTA, molar conductances and X-ray crystallography. Complexes 1, 2 and 4 have an elongated square-pyramidal geometry with an unusually long bond from the penta-coordinated Cu(II) centres to the oxygen atoms of the apically coordinated solvent (methanol, ethanol or n-butanol) molecules for the terminal Cu(II) ions, and a square planar geometry distorted tetrahedrally for the central Cu(II) ion. In complex 3, the terminal Cu(II) ions have trigonal bipyramidal coordination geometries constituted by equatorial O2N donor sites, with one oxygen atom from one of the coordinated water molecules and one nitrogen atom from a completely deprotonated L4− ligand unit in the axial positions, and the central Cu(II) ions are in slightly tetrahedrally distorted square planar geometries constituted by four phenoxo oxygen donors from two completely deprotonated L4− ligand units, and these form a tetrametal Cu–O–Cu–O–Cu–O–Cu–O eight-membered ring. These four complexes exhibit strong hydrogen bonding interactions in the solid state. Moreover, co-crystallizing n-propanol molecules link two other adjacent complex molecules into a self-assembled infinite 2D supramolecular structure via the intermolecular hydrogen bonds in complex 3.  相似文献   

2.
3.
New half-titanocenes, CpTiCl[(OCR2CH2)NMe(CH2CR2O)] [R,R′ = H (1), R,R′ = Me, H, (2), R,R′ = Me (3)], were prepared from CpTiCl3 (4) with the corresponding alcohols in the presence of triethylamine. X-ray analysis shows that 1 has slightly distorted trigonal bipyramidal geometry around Ti. These complexes exhibited moderate catalytic activities for syndiospecific styrene polymerization in the presence of MAO and the activity increased in the order: 2 > 1 > 4 > 3 (at 50 °C), 1 > 2 > 4 > 3 (at 70 °C and 90 °C).  相似文献   

4.
Water-soluble functionalized bis(phosphine) ligands L (ah) of the general formula CH2(CH2PR2)2, where for a: R = (CH2)6OH; bg: R = (CH2)nP(O)(OEt)2, n = 2–6 and n = 8; h: R = (CH2)3NH2 ( Scheme 1), have been prepared photochemically by hydrophosphination of the corresponding 1-alkenes with H2P(CH2)3PH2. Water-soluble palladium complexes cis-[Pd(L)(OAc)2] (18) were obtained by the reaction of Pd(OAc)2 with the ligands ah in a 1:1 mixture of dichloromethane:acetonitrile. The water-soluble phosphine ligands and their palladium complexes were characterized by IR, 1H and 31P NMR. A crystallographic study of complex 1 shows that the Pd(II) ion has a square planar coordination sphere in which the acetate ligands and the diphosphine ligand deviate by less than 0.12 Å from ideal planar.  相似文献   

5.
The dinuclear hydroxo complex [{Pd(μ-OH)(Phox)}2] (I) (Phox = 2-(2-oxazolinyl)phenyl) reacts in a 1:2 molar ratio with several imidate ligands to yield new cyclometallated palladium complexes [{Pd(μ-NCO)(Phox)}2] containing asymmetric imidate –NCO– bridging units. [–NCO– = succinimidate (succ) (1), phtalimidate (phtal) (2), maleimidate (mal) (3), 2,3-dibromomaleimidate (2,3-diBrmal) (4) and glutarimidate (glut) (5)]. The reaction of these complexes with tertiary phosphines provides novel mononuclear N-bonded imidate derivatives of the general formula [Pd(imidate)(Phox)(PR3)] [R = Ph (a), 4-F–C6H4 (b) or CH2CH2CN (c)]. The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, FAB, 1H, 13C and 31P). The single-crystal structures of compounds 4, 4a and 5a have been established.  相似文献   

6.
The synthesis of two mononuclear precursor copper complexes, [(HL2)2Cu], 1, and [(HL3)2Cu]·H2O, 2, and three dinuclear Cu–Ln complexes, [(HL1)2Cu(CH3CN)2Gd(NO3)3], 3, [(HL3)2CuGd(NO3)3]·2(H2O), 4, and [(HL3)2CuTb(NO3)3]·2(H2O), 5, based on the ligands H2L1 (4-bromo-2-[1-(5-bromo-2-hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-6-methoxyphenol), H2L2 (2-(1H-benzimidazol-2-yl)-4-bromo-6-methoxyphenol) and H2L3 (2-(1H-benzimidazol-2-yl)-6-methoxyphenol) are described in this contribution. The X-ray crystal structures of H2L2, 1, 3, 4, and 5 have been solved. The novel ligand H2L2 crystallizes with two independent molecules in the asymmetric unit; several intermolecular hydrogen contacts connect alternate independent H2L2 molecules into chains developing along c. In complex 1, two (HL2) ligands chelate the copper ion through their imidazolyl nitrogen and phenoxo oxygen atoms, in a relative head to tail arrangement. The molecular structure of 3 is similar to those of the previously reported Cu–Ln complexes of H2L1. In the isostructural complexes 4 and 5, two HL3 ligands sandwich one Cu2+ ion through their N,O sites and one Ln3+ ion through their O2 site, implying a relative head to head arrangement, at variance with the relative head to tail arrangement of HL2 in the mononuclear copper precursor 1. The magnetic properties of 1, 3, 4, and 5 have been investigated. Extended intermolecular antiferromagnetic interactions operate in complex 1 ((JChain = −0.8(1) cm−1). Ferromagnetic interactions between Gd (S = 7/2) and Cu (S = 1/2) centers operate in complexes 3 and 4, leading to an S = 4 ground state (JCuGd = 7.2(2) cm−1 for 3 and JCuGd = 6.5(2) cm−1 for 4). Depopulation of the Tb Stark levels, preclude obtaining reliable information on the presence and sign of the Cu–Tb interaction in 5. These new complexes are complementary to those previously reported: the Cu–O2–Gd core is planar while deformations are borne by the ligands at variance with previous examples where the constraints were located at the Cu–O2–Gd core. The presence of two independent ligands in the Cu,Gd coordination spheres confers a degree of freedom greater than that allowed by a unique tetradentate ligand. As a result, the strength of the magnetic interaction is not solely related to the dihedral angle between the CuOO and GdOO planes in the central core.  相似文献   

7.
In an effort to find simple and common single-source precursors for palladium sulfide nanostructures, palladium(II) complexes, [Pd(S2X)2] (X = COMe (1), COiPr (2)) and η3-allylpalladium complexes with xanthate ligands, [(η3-CH2C(CH3)CR2)Pd(S2X)] (R = H, X = COMe (3); R = H, X = COEt (4); R = H, X = COiPr (5); R = CH3, X = COMe (6)), have been investigated. The crystal structures of [Pd(S2X)2] (X = COMe (1), CoiPr (2)) and [(η3-CH2C(CH3)CH2)Pd(S2COMe)] (3) have been established by single crystal X-ray diffraction analysis. The complexes, 1, 2 and 3 all contain a square planar palladium(II) centre. In the allyl complex 3, this is defined by the two sulfurs of the xanthate and the outer carbons of the 2-methylallyl ligand, while in the complexes, 1 and 2 it is defined by the four sulfur atoms of the xanthate ligand. Thermogravimetric studies have been carried out to evaluate the thermal stability of η3-allylpalladium(II) analogues. The complexes are useful precursors for the growth of nanocrystals of PdS either by furnace decomposition or solvothermolysis in dioctyl ether. The solvothermal decomposition of complexes in dioctyl ether gives a new metastable phase of PdS which can be transformed to the more stable tetragonal phase at 320 °C. The nanocrystals obtained have been characterized by PXRD, SEM, TEM and EDX.  相似文献   

8.
The ternary copper(II) complexes [Cu(l-trp)(bpy)](ClO4) (1) and [Cu(l-trp)(phen)] (ClO4) · 3H2O (2) (where l-trp = l-tryptophan, bpy = bipridyl, phen = phenanthroline) have been synthesized. The single crystal X-ray structures for these complexes revealed that the monocationic CuII-units are interlinked through Cu–OCO–Cu connectivity and exist as helical coordination polymers. The two different helical strands composed with Cu1 and Cu2 independently, possess a similar pitch distance of 7.713 Å in complex 1. For complex 2, existing in the hydrated form, the Cu(II) polymeric strand and the hydrated water molecules have gained a supramolecular helical architecture with a similar pitch distance of 8.133 Å. The two helical strands in complex 1 are associated with right handed (PP) supramolecular chirality, while the helical water chain and the CuII-strand in 2 are self assembled into left handed (MM) helicity in the solid state. The solid state CD recorded for 1 and the dehydrated form of 2 exhibit a positive optical sign at their respective d–d band [λmax = 667 nm, 1; λmax = 630 nm, 2], the solution state CD for both these complexes are found to be inverted into a negative optical sign, which could be attributed to inversion of their associated supramolecular helicity. The TGA curve illustrates two distinct weight losses at 60 °C and 87 °C, equivalent to one and two water molecules, respectively. The PXRD pattern for the hydrated and dehydrated forms of 2 indicated a change, on comparison with the simulated diffractograph. The fluorescence properties of both these complexes, possessing tryptophan and bipy/phen, were investigated.  相似文献   

9.
The reaction of acetonitrile (15) and mixed acetonitrile/water 1:1 (69) solutions containing the cyanide-bearing [Fe(bipy)(CN)4] building block (bipy = 2,2′-bipyridine) and the partially blocked [Ln(bpym)]3+ cation (Ln = lanthanide trivalent cation and bpym = 2,2′-bipyrimidine) has afforded two new families of 3d–4f supramolecular assemblies of formula [Ln(bpym)(NO3)2(H2O)3][Fe(bipy)(CN)4] · H2O · CH3CN [Ln = Sm (1), Gd (2), Tb (3), Dy (4) and Ho (5)] and [Ln(bpym)(NO3)2(H2O)4][Fe(bipy)(CN)4] [Ln = Pr (6), Nd (7), Sm (8), Gd (9)]. They crystallize in the P21/c (15) and P2/c (69) space groups and their structures are made up of [Fe(bipy)(CN)4] anions (19) and [Ln(bpym)(NO3)2(H2O)n]+ cations [n = 3 (15) and 4 (69)] with uncoordinated water and acetonitrile molecules (15) which are interlinked through an extensive network of hydrogen bonds and π–π stacking into three-dimensional motifs. Both families have in common the occurrence of the low-spin iron(III) unit [Fe(bipy)(CN)4] where two bipy–nitrogen and four cyanide–carbon atoms build a somewhat distorted octahedral surrounding around the iron atom [Fe–N = 1.980(3)–1.988(3) Å (15) and 1.988(2)–1.992(2) Å (69); Fe–C = 1.904(5)–1.952(4) Å (15) and 1.911(2)–1.948(3) Å (69)]. The main structural difference between both families concerns the environment of the lanthanide atom which is nine- (15)/10-coordinated (69) with a chelating bpym, two bidentate nitrate and three (15)/four (69) water molecules building distorted monocapped (15)/bicapped (69) square antiprisms. This different lanthanide environment is at the origin of the different hydrogen bonding pattern of the two families of compounds.  相似文献   

10.
4-Phosphoranylidene-5(4H)-oxazolones 1 undergo hydrolysis in THF in the presence of HBF4 at room temperature to give N-acyl-α-triphenylphosphonioglycines 3 (R2 = H) in very good yields. 4-Alkyl-4-triphenylphosphonio-5(4H)-oxazolones 2 react with water in CH2Cl2/THF solution without any acidic catalyst at 0-5 °C in a few days yielding N-acyl-α-triphenylphosphonio-α-amino acids 3 (R2 = Me) or α-(N-acylamino)alkyltriphenylphosphonium salt 4 (R2 = CH2OMe). α-Triphenylphosphonio-α-amino acids 3, on heating up to 105-115 °C under reduced pressure (5 mmHg) or on treatment with diisopropylethylamine in CH2Cl2 at 20 °C undergo decarboxylation to give the corresponding α-(N-acylamino)alkyltriphenylphosphonium salts 4, usually in very good yields.  相似文献   

11.
[Ag2(CH3CH2C(CH3)2COO)2] (1), [Ag2(CH3CH2C(CH3)2COO)2(PMe3)2] (2) and [Ag2(CH3CH2C(CH3)2COO)2(PEt3)2] (3) were prepared and characterized by MS-EI; 1H, 13C, 31P NMR, variable temperature IR (VT-IR) spectroscopy and thermal analysis. MS and VT-IR data analysis suggests bidentate bridging carboxylates and monodentately bonded phosphines in the solid phase. The same methods used for gas phase analysis of 1–2 proved [(CH3CH2C(CH3)2COO)Ag2]+ as the main ion, which could be transported in the gas phase during the CVD process. In the case of 3, similar intensity to the latter ion revealed [Ag{P(C2H5)}]+ and it is responsible for the CVD performance of 3. Thermal analysis results revealed that decomposition of 1–3 proceed in one endothermic process, with metallic silver formation between 197 and 220 °C. In the case of 1, VT-IR studies of the gaseous decomposition products demonstrate the presence of ester molecules and CO2, whereas for 2 the main gaseous product appeared to be acid anhydride. Therefore, 2 was not used as a silver CVD precursor. Metallic layers were produced from 3 in hot-wall CVD experiments, (between 200 and 280 °C), under a total reactor pressure of 2.0 mbar, using argon as a carrier gas. Thin films deposited on Si(1 1 1) substrate were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Silver films obtained at moderate temperature (220–250 °C) revealed a thickness below 50 nm, and were whitish colored and slightly matt.  相似文献   

12.
The μ-aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; Xyl = 2,6-Me2C6H3) react with ethynylferrocene to give the corresponding bridging vinyliminium complexes [Fe2{μ-η13-CN(Me)(R)CHC(Fc)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 2a; R = Xyl, 2b). Insertion of the ethynylferrocene in the metal-carbyne bond is regiospecific, and leads to the formation of only one isomer.Complexes 2a and 2b undergo hydride addition (by NaBH4) affording the enaminoalkylidene complex [Fe2{μ-η13-C(H)(N(Me)2)CHC(Fc)}(μ-CO)(CO)(Cp)2] (3a) and the bis-alkylidene [Fe2{μ-η12-C(N(Me)(Xyl))CH2C(Fc)}(μ-CO)(CO)(Cp)2] (3b), respectively. Upon treatment with NaH, compounds 2a and 2b undergo fragmentation, affording the 1-metalla-2-aminocyclopenta-1,3-dien-5-one complexes [Fe(CO)(Cp){C(N(Me)(R))}CHC(Fc)C(O)}] (R = Me, 4a; R = Xyl, 4b).The molecular structures of 2b, 3b and 4b have been determined by X-ray diffraction studies.  相似文献   

13.
The allyl-substituted group 4 metal complexes [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti, R = CH2CHCH2, (2); R = CH2C(CH3)CH2 (3); M = Zr, R = CH2CHCH2 (4), R = CH2C(CH3)CH2 (5)] have been synthesized by the reaction of allyl ansa-magnesocene derivatives and the tetrachloride salts of the corresponding transition metal. The dialkyl complexes ] [M = Ti, R = CH2=CHCH2, R′ = Me (6), R′ = CH2Ph (7); R = CH2C(CH3)CH2, R′ = Me (8), R′ = CH2Ph (9); M = Zr, R = CH2CHCH2, R′ = Me (10), R′ = CH2Ph (11); R = CH2C(CH3)CH2, R′ = Me (12), R′ = CH2Ph (13)] have been synthesized by the reaction of the corresponding ansa-metallocene dichloride complexes 2-5 and two molar equivalents of the alkyl Grignard reagent. Compounds 2-5 reacted with H2 under catalytic conditions (Wilkinson’s catalyst or Pd/C) to give the hydrogenation products [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = CH2CH2CH3 (14) or R = CH2CH(CH3)2 (15); M = Zr and R = CH2CH2CH3 (16) or R = CH2CH(CH3)2 (17)]. The reactivity of 2-5 has also been tested in hydroboration and hydrosilylation reactions. The hydroboration reactions of 3, 4 and 5 with 9-borabicyclo[3.3.1]nonane (9-BBN) yielded the complexes [M{(9-BBN)CH2CH(R)CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (18); M = Zr and R = H (19) or R = CH3 (20)]. The reaction with the silane reagents HSiMe2Cl gave the corresponding [M{ClMe2SiCH2CHRCH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (21); M = Zr and R = H (22) or R = CH3 (23)]. The reaction of 22 with t-BuMe2SiOH produced a new complex [Zr{t-BuMe2SiOSi(Me2)CH2CH2CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] (24) through the formation of Si-O-Si bonds. On the other hand, reactivity studies of some zirconocene complexes were carried out, with the insertion reaction of phenyl isocyanate (PhNCO) into the zirconium-carbon σ-bond of [Zr{(n-Bu)CH(η5-C5Me4)(η5-C5H4)}2Me2] (25) giving [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr{Me{κ2-O,N-OC(Me)NPh}] as a mixture of two isomers 26a-b. The reaction of [Zr{(n-Bu)(H)C(η5-C5Me4)(η5-C5H4)}(CH2Ph)2] (27) with CO also provided a mixture of two isomers [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr(CH2Ph){κ2-O,C-COCH2Ph}] 28a-b. The molecular structures of 4, 11, 16 and 17 have been determined by single-crystal X-ray diffraction studies.  相似文献   

14.
The 4,4′-bis(RfCH2OCH2)-2,2′-bpy ligands [Rf = n-C3F7 (1a), HCF2(CF2)3 (1b)] were prepared and then treated with [MCl2(CH3CN)2] (M = Pt or Pd) to result in the corresponding metal complexes, [MCl2(4,4′-bis(RfCH2OCH2)-2,2′-bpy)] (M = Pt 2a–b; Pd 3a–b). Both ligands and metal complexes were fully characterized by multi-nuclei NMR (1H, 19F and 13C), FTIR, and mass (GC/MS or HR-FAB) methods. The X-ray structures of 2a–b and 3a–b were studied. With terminal CF3, the structures of 2a and 3a exhibit disordered polyfluorinated regions in solid state. With terminal HCF2, the structures of 2b and 3b show a π–π stacking of the bpy planes, five-membered C–H···O hydrogen bond and an unusual intramolecular blue-shifting C–H···F–C hydrogen bond system, whereas without terminal HCF2, the structures of 2a and 3a show the similar π–π stacking, five-membered C–H···O hydrogen bond and typical orientation of polyfluorinated ponytails, but not the C–H···F–C hydrogen bond system. The CV and UV/Vis studies were also carried out.  相似文献   

15.
The synthesis of new organotin compounds of general formula Tip2SnRR′ (Tip = 2,4,6-triisopropylbenzene; R = R′ = CH3 (1); R = R′ = CHCH2 (2); R = CH2Ph, R′ = Br (3); R = R′ = CH2CHCH2 (4)) is described herein. The compounds have been characterized by 1H, 13C, 119Sn NMR, mass spectroscopy and elemental analysis. Characterization by single-crystal X-ray diffraction analysis has been obtained for compounds 2, 3 and 4. The reactivity with ionizing agents has been studied by NMR spectroscopy. Compounds 2 and 4 underwent alkyl abstraction by [(CH3CH2)3Si]+[B(C6F5)4] affording stable cationic species (2a, 4a). For the cationic specie 4a a π-interaction of the benzyl group to the metal centre was recognized by solution NMR studies. A cationic species (3a) was generated from compound 3 using AgSbF6 as ionizing agent. The cationic species (2a, 3a) exhibited moderate activity as initiator in the cationic polymerization of 1,4-butadiene and good activity in the ring opening polymerization (ROP) of propylene oxide and ε-caprolactone.  相似文献   

16.
17.
The ortho-metallated complexes [Pd22(C,C)-C6H4(PPh2CHC(O)C6H5R}2(μ-Cl)2] (R = Ph (1a), NO2 (1b), Br (1c)) were prepared by refluxing equimolar mixtures of Ph3PCHC(O)C6H5R, (R = Ph, NO2, Br) and Pd(OAc)2 in MeOH, followed by an excess of NaCl. The dinuclear complexes (1a-1c) react with silver trifluoromethylsulfonate and bidentate ligands [L = bipy (2,2′-bipyridine), phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), dppp (bis(diphenylphosphino)propane)] giving the mononuclear stabilized orthopalladated complexes in endo position [Pd{κ2(C,C)-C6H4(PPh2CHC(O)R}L](OTf) [R = Ph, L = phen (2a), bipy (3a), dppe (4a), dppp (5a); R = NO2, L = phen (2b), bipy (3b), dppe (4b), dppp (5b); R = Br, L = phen (2c), bipy (3c), dppe (4c), dppp (5c); OTf = trifluoromethylsulfonate anion]. Orthometalation and ylidic C-coordination are demonstrated by an X-ray diffraction study of 2c and 3c. In the structures, the palladium atom shows a slightly distorted square-planar coordination geometry.  相似文献   

18.
Monomeric titanatrane i-PrOTi(OCMe2CH2)3N (1) and dimeric titanatranes [i-PrOTi(OCH2CH2)nN(CH2CMe2O)3−n]2 (n = 1, 2; n = 2, 3) were synthesized by the reaction of Ti(O-i-Pr)4 with a series of triethanolateamines such as (OCH2CH2)nN(CH2CMe2O)3−n3− (n = 0, Lig1; n = 1, Lig2; n = 2, Lig3), which vary by the number of CMe2 groups adjacent to a OH functionality from 3 (Lig1H3) to 2 (Lig2H3) to 1 (Lig3H3). The resultant titanatranes 13 have been characterized by solution 1H and 13C{1H} NMR and their solid state structures have been determined by X-ray crystallography. Whereas compound 1 is monomeric in the solid state, compounds 2 and 3 are dimeric, due to the reduction of the steric congestion in the vicinity of the Ti.  相似文献   

19.
Magnesium complexes containing ketiminate ligands were synthesized and characterized. MgBu2 reacted readily in toluene with two equiv. of [MeC(O)CHC(NHAr)Me], where Ar = 2,6-diisopropylphenyl, to generate [MeC(O)CHC(NAr)Me]2Mg (1) in 43% yield. The four-coordinate magnesium compound 1 is very moisture sensitive and acts as a Lewis acid, accepting one equiv. of Lewis base to form five-coordinate magnesium compounds. Compound [MeC(O)CHC(NAr)Me]2Mg[MeC(O)CHC(NHAr)Me] (2) was obtained in 57% yield from the reaction in toluene of MgBu2 with three equiv. of [MeC(O)CHC(NHAr)Me]. Treatment of 1 with one equiv. of free ketimine ligands [MeC(O)CHC(NHAr)Me] also led to the formation of 2. The bulky η1-ketimine of 2 can be replaced with a less bulky Lewis base such as pyridine. Treatment of 1 with excess pyridine in toluene at ambient temperature led to the formation of compound [MeC(O)CHC(NAr)Me]2Mg[NC5H5] (3) as colorless crystalline solids in 51% yield. Compounds 1, 2, and 3 were characterized by NMR and X-ray crystallography. Compounds 2 and 3 showed no activity toward the polymerization of ε-caprolactone at 25 °C after 3 h. However, when the temperature was increased to 70 °C, compounds 2 and 3 efficiently catalyzed polymerization of ε-caprolactone to generate high molecular weight poly-ε-caprolactones. The polydispersity index (PDI) of these poly-ε-caprolactones is in the range 1.57-3.18.  相似文献   

20.
A novel versatile tridentate 3-(aminomethyl)naphthoquinone proligand, 3-[N-(2-pyridylmethyl)aminobenzyl]-2-hydroxy-1,4-naphthoquinone (HL), was obtained from the Mannich reaction of 2-hydroxy-1,4-naphthoquinone (Lawsone) with 2-aminomethylpyridine (amp) and benzaldehyde. The reactions of HL with CuCl2·2H2O yielded two novel dinuclear copper(II) complexes, [Cu(L)(H2O)(μ-Cl)Cu(L)Cl] (1b), [CuCl(L)(μ-Cl)Cu(amp)Cl] (2) and a polymeric compound, [Cu(L)Cl)]n (1a), whose relative yields were sensitive to temperature, reagents concentration and presence of base. The crystalline structures of 1b and 2 were determined by X-ray diffraction studies. The two copper atoms in complex 1b are connected by a single chloro bridge with a Cu?Cu separation of 4.1342(8) Å and Cu(1)–Cl(1)–Cu(2) angle of 109.31(4)°. In complex 2 the two copper atoms are held together by a chloro and a naphthalen-2-olate bridges [Cu(1)–Cl(2)–Cu(2) and Cu(1)–O(1)–Cu(2) angles being 83.31(3) and 109.70(9)°, respectively, and the Cu?Cu separation, 3.3476(9) Å]. As expected, variable-temperature magnetic susceptibility measurements of complex 1b showed weak antiferromagnetic intramolecular coupling between the copper(II) centers, with J = −5.7 cm−1, and evidenced for complex 2 strong antiferromagnetic coupling, with J ∼ −120 cm−1. Furthermore, the magnetic behaviour of compound 1a suggested an infinite 1D coordination polymeric structure in which the copper(II) centers are connected by Cl–Cu–Cl bridges. Solution data (UV–Vis spectroscopy and cyclic voltammetry) indicated structural changes of 2 and 1a in CH3CN, and evidenced conversion of polymer 1a into dimer 1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号