首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An incompressible smoothed particle hydrodynamics (ISPH) method is developed for the modeling of multiphase Newtonian and inelastic non-Newtonian flows at low density ratios. This new method is the multiphase extension of Xenakis et al, J. Non-Newtonian Fluid Mech., 218, 1-15, which has been shown to be stable and accurate, with a virtually noise-free pressure field for single-phase non-Newtonian flows. For the validation of the method a semi-analytical solution of a two-phase Newtonian/non-Newtonian (inelastic) Poiseuille flow is derived. The developed method is also compared with the benchmark multiphase case of the Rayleigh Taylor instability and a submarine landslide, thereby demonstrating capability in both Newtonian/Newtonian and Newtonian/non-Newtonian two-phase applications. Comparisons with analytical solutions, experimental and previously published results are conducted and show that the proposed methodology can accurately predict the free-surface and interface profiles of complex incompressible multi-phase flows at low-density ratios relevant, for example, to geophysical environmental applications.  相似文献   

2.
In this research, experimental studies have been performed on the hydrodynamic interaction between two spheres by using particle image velocimetry and measuring the force between the spheres. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and a dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia and unsteadiness play important roles in the particle–particle interaction in the Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in the Newtonian fluid. In the non-Newtonian fluid, in addition to inertial effect, normal stress differences and viscoelasticity play important roles as expected. In dilute solutions weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also appear to affect the physics of the problem.  相似文献   

3.
A two-dimensional transient finite element model capable of simulating problems related to two-layer polymer flows has been developed. This technique represents an effective tool which can be used to study the possibility of the onset of interfacial instability in coextrusion flows, considering melt rheology as well as the fluid–geometry interaction. A code has been developed to solve the transient problem of the flow of bi-component systems of Newtonian and generalized Newtonian fluids through parallel plates and complex geometries, such as: 2:1 abrupt expansion, 2:1 (30°) expansion, 4:1 abrupt contraction and 4:1 tapered (30°) contraction. Solutions are compared with experimental data from the literature and results provided by linear stability analysis (LSA) for the case of parallel plate flows. Numerical results are in agreement with LSA results for the parallel plate geometry cases studied. The expansion geometries tend to stabilize flows in the parallel plate section downstream of the expansion. Contractions may give rise to break-up of the interface depending on the flow conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
A newly designed eccentric cylinder device has been used to study the deformation and orientation of single Newtonian droplets immersed in an immiscible Newtonian liquid in a controlled complex flow field. Optical microscopy coupled with image acquisition analysis allows monitoring the dynamics of droplets flowing in the gap between the eccentric cylinders. Throughout the experiments, the flow intensity was kept below the critical conditions for droplet break-up. The experimental results are compared with predictions which are obtained using the transient form of the phenomenological model of Maffettone and Minale (J Non-Newtonian Fluid Mech 78:227–241, 1998; J Non-Newtonian Fluid Mech 84:105–106, 1999), incorporating a flow type parameter that accounts for the relative amount of elongational effects in the flow field and adapting the capillary number to mixed flows. For all the sub-critical flows studied here, good agreement was found between model predictions and experimental data, providing, for the first time, a quantitative assessment of drop shape predictions in complex flows.  相似文献   

5.
In this paper, the effects of the side walls on the unsteady flow of a second-grade fluid in a duct of rectangular cross-section are considered. Two types of unsteady flows are investigated. One of them is the unsteady flow in a duct of rectangular cross-section moving parallel to its length and the other is the unsteady flow due to an applied pressure gradient in a duct of rectangular cross-section whose sides are at rest. It is shown that a Newtonian fluid reaches steady-state earlier than a second-grade fluid and the effect of the side walls on a second-grade fluid is more effective than that on a Newtonian fluid.  相似文献   

6.
In this study, we examine the numerical simulation of transient viscoelastic flows with two moving free surfaces. A modified Galerkin finite element method is implemented to the two-dimensional non-steady motion of the fluid of the Oldroyd-B type. The fluid is initially placed between two parallel plates and bounded by two straight free boundaries. In this Lagrangian finite element method, the spatial mesh deforms in time along with the moving free boundaries. The unknown shape of the free surfaces is determined with the flow field u, v, τ, p by the deformable finite element method, combined with a predictor-corrector scheme in an uncoupled fashion. The moving free surfaces and fluid motion of both Newtonian and non-Newtonian flows are investigated. The results include the influence of surface tension, fluid inertia and elasticity.  相似文献   

7.
Some properties of unsteady unidirectional flows of a fluid of second grade are considered for flows produced by the sudden application of a constant pressure gradient or by the impulsive motion of one or two boundaries. Exact analytical solutions for these flows are obtained and the results are compared with those of a Newtonian fluid. It is found that the stress at the initial time on the stationary boundary for flows generated by the impulsive motion of a boundary is infinite for a Newtonian fluid and is finite for a second grade fluid. Furthermore, it is shown that initially the stress on the stationary boundary, for flows started from rest by sudden application of a constant pressure gradient is zero for a Newtonian fluid and is not zero for a fluid of second grade. The required time to attain the asymptotic value of a second grade fluid is longer than that for a Newtonian fluid. It should be mentioned that the expressions for the flow properties, such as velocity, obtained by the Laplace transform method are exactly the same as the ones obtained for the Couette and Poiseuille flows and those which are constructed by the Fourier method. The solution of the governing equation for flows such as the flow over a plane wall and the Couette flow is in a series form which is slowly convergent for small values of time. To overcome the difficulty in the calculation of the value of the velocity for small values of time, a practical method is given. The other property of unsteady flows of a second grade fluid is that the no-slip boundary condition is sufficient for unsteady flows, but it is not sufficient for steady flows so that an additional condition is needed. In order to discuss the properties of unsteady unidirectional flows of a second grade fluid, some illustrative examples are given.  相似文献   

8.
Relatively few correlations are available for non-Newtonian fluid flows through packed beds, even though such fluids are frequently used in industry. In this paper, a correlation is presented for yield stress fluid flow through packed beds. The correlation is developed by introducing the yield stress model in place of the Newtonian model used in deriving Erguns equation. The resulting model has three parameters that are functions of the geometry and roughness of the particle surfaces. Two of the parameters can be deduced in the limit as the yield stress becomes negligible and the model reduces to Erguns equation for Newtonian fluids. The third model parameter is determined from experimental data. The correlation relates a defined friction factor to the dimensionless Reynolds and Hedstrom numbers and can be used to predict pressure drop for flow of a yield stress fluid through a packed bed of spherical particles. Conditions for flow or no-flow are also determined in the correlation. Comparison of model calculations, between a Newtonian and a yield stress fluid for flow penetration into a packed bed of spheres, shows the yield stress fluid initially performs similar to the Newtonian fluid, at large Reynolds numbers. At lower Reynolds numbers the yield stress effect becomes important and the flow rate significantly decreases when compared to the Newtonian fluid.  相似文献   

9.
New experimental data are presented and discussed for fully developed pipe flow of shear-thinning, viscoelastic polymer solutions in the transitional regime between laminar and turbulent flow. The data confirm that such transitional flows exhibit significant departures from axisymmetry in contrast to the fully developed pipe flow of Newtonian fluids or both laminar and turbulent flows of such drag-reducing liquids. The azimuthal structure of the asymmetry is investigated together with its axial development and also the velocity fluctuation levels. These data do not lead to an explanation for the asymmetry but do suggest that the influence of the flow geometry both upstream and downstream can be ruled out.  相似文献   

10.
A model for lubricated squeezing flow of a viscoelastic fluid is developed in order to study the viability of this flow as a rheological technique for generating equibiaxial extensional deformations in polymer melts. In this simple flow model, the melt, described by an upper-convected Maxwell fluid, is squeezed between thin films of a Newtonian fluid. Comparisons of the model predictions for constant strain rate and constant stress flows are made with experimental results presented in the first paper. Predictions from the model are able to describe the effects of lubricant viscosity and experimental configuration and indicate the technique fails for these flows at Hencky strains of approximately one. The cause for this failure is lubricant thinning, which leads to significant errors in both the measured stress difference and the strain. Received: 31 January 2000 Accepted: 31 May 2000  相似文献   

11.
The penalty function formulation of the finite element method is described for the analysis of transient incompressible creeping flows. Marker particles are utilized to represent moving free surfaces and to visualize the flow patterns. For determining the movement of markers from element to element, the area coordinate system of the linear triangular element is introduced. With the method presented, a punch indentation problem and an injection problem for an L-shaped cavity are solved for Newtonian and power-law fluids.  相似文献   

12.
With the long-term objective of Critical Heat Flux (CHF) prediction, bubble dynamics in convective nucleate boiling flows has been studied using a Direct Numerical Simulation (DNS). A sharp-interface phase change model which was originally developed for pool boiling flows is extended to convective boiling flows. For physical scales smaller than the smallest flow scales (smaller than the grid size), a micro-scale model was used. After a grid dependency study and a parametric study for the contact angle, four cases of simulation were carried out with different wall superheat and degree of subcooling. The flow structures around the growing bubble were investigated together with the accompanying physics. The relation between the heat flux evolution and the bubble growth was studied, along with investigations of bubble diameter and bubble base diameter evolutions across the four cases. As a validation, the evolutions of bubble diameter and bubble base diameter were compared to experimental observations. The bubble departure period and the bubble shapes show good agreement between the experiment and the simulation, although the Reynolds number of the simulation cases is relatively low.  相似文献   

13.
Extensive experimental data on the birefringence in converging and diverging flows of a polymeric melt have been obtained. The birefringence and pressure drop measurements were carried out in working cells of planar geometry having different contraction angles and contraction ratios. For investigation of diverging or abrupt expansion flow, the direction of flow in the cells was reversed. The theoretical predictions are based upon the Leonov constitutive equation and a finite element scheme with streamwise integration.In contrast to Newtonian and second-order fluids, viscoelastic fluids at high shear rates show significant differences in pressure drop and birefringence (i.e. stresses) in converging and diverging flows. For a constant flow rate, the pressure drop is higher and the birefringence smaller in diverging flows than in converging flows. This difference increases with increasing flow rate. Further, for the same contraction ratio but different contraction angles, the birefringence maximum increases considerably with contraction angle. In addition, an increase in contraction ratio has the same effect.The viscoelastic constitutive equation of Leonov has been shown to describe all the above viscoelastic effects observed in the experiments. In general, a reasonable agreement between theory and experiment has been obtained, which shows the usefulness of the Leonov model in describing actual flows.  相似文献   

14.

A cell-free layer, adjacent to microvessel walls, is present in the blood flow in the microcirculation regime. This layer is of vital importance for the transport of oxygen-saturated red cells to unsaturated tissues. In this work, we first discuss the physics of formation of this cell-free layer in terms of a balance between the shear-induced dispersion and particle migration. To this end, we use high-viscosity drops as prototypes for cells, and discuss our results in terms of physical parameters such as the viscosity ratio and the capillary number. We also provide a short-time analysis of the transient drift-dispersion equation, which helps us better explain the formation process of the cell-free layer. Moreover, we present models for investigating the blood flow in two different scales of microcirculation. For investigating the blood flow in venules and arterioles, we consider a continuous core-flow model, where the core-flow solution is considered to be a Casson fluid, surrounded by a small annular gap of Newtonian plasma, corresponding to the cell-free layer. We also propose a simple model for smaller vessels, such as capillaries, whose diameters are of a few micrometers. In this lower-bound limit, we consider a periodic configuration of aligned, rigid, and axi-symmetric cells, moving in a Newtonian fluid. In this regime, we approximate the fluid flow using the lubrication theory. The intrinsic viscosity of the blood is theoretically predicted, for both the lower and upper-bound regimes, as a function of the non-dimensional vessel diameter, in good agreement with the previous experimental works. We compare our theoretical predictions with the experimental data, and obtain qualitatively good agreement with the well-known Fåhræus-Lindqvist effect. A possible application of this work could be in illness diagnosis by evaluating changes in the intrinsic viscosity due to blood abnormalities.

  相似文献   

15.
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.  相似文献   

16.
The boundary element method (BEM) is implemented for the simulation of three-dimensional transient flows of typical relevance to mixing. Creeping Newtonian and viscoelastic fluids of the Maxwell type are examined. A boundary-only formulation in the time domain is proposed for linear viscoelastic flows. Special emphasis is placed on cavity flows involving simple- and multiple-connected moving domains. The BEM becomes particularly suited in multiple-connected flows, where part of the boundary (stirrer or rotor) is moving, and the remaining outer part (cavity or barrel) is at rest. In this case, conventional methods, such as the finite element method (FEM), generally require remeshing or mesh refinement of the three-dimensional fluid volume as the flow evolves and the domain of computation changes with time. The BEM is shown to be much easier to implement since the kinematics of the elements bounding the fluid is known (imposed). It is found that, for simple cavity flow induced by a rotating vane at constant angular velocity, the tractions at the vane tip and cavity face exhibit non-linear periodic dynamical behavior with time for fluids obeying linear constitutive equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k\({\varepsilon}\) turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.  相似文献   

18.
We prove in Theorem 1 a new relationship between the stress, pressure, velocity, and mean curvature for embedded surfaces in incompressible viscous flows. This is then used to define a corresponding modified pressure boundary condition for flow of Newtonian and generalized Newtonian fluids. These results agree with an intuitive notion of the flow physics but apparently have not previously been shown rigorously. We describe some of the implementation issues for inflow and outflow boundaries in this context and give details for a penalty treatment of the associated tangential velocity constraint. This is then implemented and applied in high‐resolution 3D benchmark calculations for a representative generalized viscosity model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The flow patterns produced by rotating one end wall of a circular cylinder completely filled with a strongly shear-thinning viscoelastic liquid have been investigated using the laser-induced fluorescence flow visualization technique. An intense toroidal vortex is produced in the vicinity of the rotating end wall with outward spiraling flow over the end wall itself. This vortex drives a second countercirculating vortex of low intensity in the region of the stationary end wall. Under some circumstances an axial jet of fluid is observed moving away from the rotating end wall. This jet showed evidence of instability, whereas all flows were otherwise completely steady. The double-vortex structure is different from those recently observed in either a Newtonian or slightly shear-thinning liquid or in the low Reynolds number flow of an elastic liquid. There are, however, similarities with older work for a viscoelastic liquid at relatively high Reynolds numbers. The observations highlight the suitability of the cylinder/rotating end wall configuration as a sensitive test case for computational work.  相似文献   

20.
A new experimental procedure for performing simultaneous, phase-separated velocity measurements in two-phase flows is introduced. Basically, the novel particle image velocimetry (PIV) technique is a combination of the three most often used PIV techniques in multiphase flows: PIV with fluorescent tracer particles, shadowgraphy, and the digital phase separation with a masking technique. The combination of these three independent measurement techniques is achieved by shifting the background intensity of a PIV recording to a higher, but uniform gray value level. In order to combine the advantages of these multiphase-PIV methods, a new PIV set-up was developed. With this set-up the velocity distributions of the two phases are measured simultaneously with only one b/w camera. This experimental set-up is aimed at providing a means for characterizing the modification of turbulence in the liquid phase by bubbles. This phenomenon is often called "pseudo-turbulence".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号