首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A sensitive microextraction method based on a new poly(methacrylic acid‐ethylene glycol dimethacrylate‐N‐vinylcarbazole) monolithic capillary column, coupled with gas chromatography and electron capture detection, was established for the determination of three benzodiazepines (estazolam, alprazolam, and triazolam) in urine and beer samples. Owing to the abundant π electrons and polar surface of N‐vinylcarbazole, N‐vinylcarbazole‐incorporated monolith showed a higher extraction performance than neat poly(methacrylic acid‐ethylene glycol dimethacrylate) because of the enhanced π–π stacking interactions derived from the π‐electron‐rich benzene groups from N‐vinylcarbazole. The monolith exhibited a homogeneous and continuous structure, good permeability, and a long lifetime. Factors affecting the extraction such as solution pH, salt concentration, sample volume, desorption solvent, and desorption volume were investigated. Under the optimized conditions, limits of detection of 0.011–0.026 ng/mL were obtained. The one‐column and column‐to‐column precision values were ≤7.2 and ≤9.8%, respectively. The real samples were first diluted with deionized water and then treated by the monolith microextraction before gas chromatography analysis. The recoveries were 81.4–93.3 and 83.3–94.7% for the spiked samples, with relative standard deviations of 4.1–8.1 and 3.8–8.5%, respectively. This method provides an accurate, simple, and sensitive detection platform for drug analysis.  相似文献   

2.
Hordenine is an active compound found in several foods, herbs and beer. In this work, a novel sorbent was fabricated for selective solid‐phase extraction (SPE) of hordenine in biological samples. The organic polymer sorbent was synthesized in one step in the plastic barrel of a syringe by a pre‐polymerization solution consisting of methacrylic acid (MAA), 4‐vinylphenylboronic acid (VB) and ethylene glycol dimethacrylate (EGDMA). The conditions for preparation were optimized to generate a poly(MAA‐VB‐EGMDA) monolith with good permeability. The monolith exhibited good enrichment efficiency towards hordenine. By using tyramine as the internal standard, a poly(MAA‐VB‐EGMDA)‐based SPE‐HPLC method was established for analysis of hordenine. Conditions for SPE, including volume of eluting solvent, pH of sample solution, sampling rate and sample volume, were optimized. The proposed SPE‐HPLC method presented good linearity (R2 = 0.9992) within 10–2000 ng/mL and the detection limits was 3 ng/mL, which is significantly more sensitive than reported methods. The method was also applied in plasma and urine samples; good capability of removing matrices was observed, while hordenine in low content was well extracted and enriched. The recoveries were from 90.6 to 94.7% and from 89.3 to 91.5% for the spiked plasma and urine samples, respectively, with the relative standard deviations <4.7%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A method based on poly (methacrylic acid‐co‐ethylene glycol dimethacrylate) monolith microextraction and octadecylphosphonic acid‐modified zirconia‐coated CEC followed by field‐enhanced sample injection preconcentration technique was proposed for sensitive CE‐UV analysis of six antidepressants (doxepin, clozapine, imipramine, paroxetine, fluoxetine and chlorimipramine) in human plasma and urine. A poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic capillary column was introduced for the extraction of antidepressants from urine and plasma samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the desorption solvent, which normally provided an excellent medium to ensure direct compatibility for field‐enhanced sample injection in CE, was analyzed by CE directly. By the use of alkylphosphonate‐modified zirconia‐coated CEC for separation of the basic compounds of antidepressants, high separation efficiency and resolution were achieved because that both hydrophobic interaction between analytes and alkylphosphonate‐modified zirconia coat and electrophoretic effect work on the separation of antidepressants. The best separation was achieved using a buffer composed of 0.3 M ammonium acetate (adjusted to pH 4.5 with 1 M acetic acid) and 35% ACN v/v, with a temperature and voltage of 20°C and 20 kV, respectively. By applying both preconcentration procedures, LODs of 11.4–51.5 and 3.7–17.0 μg/L were achieved for the six antidepressants in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range of 50–5000 μg/L in plasma and urine sample.  相似文献   

4.
In this research, the headspace solid‐phase microextraction (SPME) coupled with GC flame ionization detector was applied for the determination of some monocyclic aromatic amines in real water and urine samples. A sol–gel technique was applied for the preparation of the SPME fibers. Two different sol–gel coatings, (PEG and poly(ethylene glycol) modified with multi‐walled carbon nanotubes [PEG/CNTs]), were prepared and compared. Extraction efficiency of PEG/CNTs was better than PEG fiber in the same conditions. To obtain maximum extraction efficiency, some parameters such as desorption temperature and time, temperature and time of extraction, salt effect, pH, and stirring speed were investigated and optimized for PEG/CNTs fiber. Under optimized conditions, the LODs (S/N = 3) were in the range of 0.5–50 ng/L and limits of quantification (S/N = 10) were between 1 and 500 ng/L. Repeatability (n = 5) was in the range of 3.2–9.1% and reproducibility (n = 3) was obtained from 5.5 to 12.0%. The method was successfully applied to the analysis of real water and urine samples with recoveries from 63.7 to 97.0%.  相似文献   

5.
A poly(4‐vinylpridine‐co‐ethylene glycol dimethacrylate) monolith was synthesized in a capillary and constructed as a concentrator for the in‐line polymeric monolith microextraction coupling with capillary electrophoresis. The integrated system was then used for the simultaneous determination of five trace phenols (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐chlorophenol, and 2,4‐dichlorophenol) in water samples. The experimental parameters for in‐line solid‐phase extraction, such as composition and volume of the elution plug, pH of sample solution, and the time for sample loading were optimized. The sensitivity for the mixture of phenols (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐chlorophenol, and 2,4‐dichlorophenol) enhanced to 615–2222 folds at the optimum condition was compared to the sensitivity for a normal hydrodynamic injection in capillary electrophoresis. Linearity ranged from concentration of 10–500 ng mL?1(R2 > 0.999) for all five phenols with the detection limits of 1.3–3.3 ng mL?1. In tap, snow and Yangtze River water spiked with 20 ng mL?1 and 200 ng mL?1, respectively, the recoveries of 84–105% were obtained. It has been demonstrated that this work has great potential for the analysis of phenols in genuine water samples.  相似文献   

6.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

7.
陈娜  张毅军  赵万里  陈军  张裕平 《色谱》2018,36(1):5-11
采用氯化胆碱-乙二醇低共熔溶剂(DES)作致孔剂,制备了聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)[poly(BMA-EDMA)]固相微萃取头,并与超高效液相色谱法(UPLC)结合测定了湖水中的3种多环芳烃(PAHs)。实验与不使用DES致孔剂的固相微萃取头和商品化聚二甲硅氧烷(PDMS)萃取头进行比较,含DES的poly(BMA-EDMA)固相微萃取头的富集效果最好。系统考察了萃取条件(萃取时间、萃取溶剂、解吸时间、解吸溶剂及离子强度)对水样中多环芳烃萃取效率的影响。在最优的实验条件下,3种多环芳烃类化合物(萘、联苯、菲)的线性范围为0.1~6.0 mg/L(r≥0.990 3),检出限为2.1~4.9μg/L,回收率为86.4%~111.3%,相对标准偏差(RSD,n=6)为11.2%~15.1%。该法操作简便,稳定性好,成本低,适用于实际环境水样中多环芳烃类化合物的测定。  相似文献   

8.
A novel metal‐ion‐mediated complex‐imprinted‐polymer‐coated solid‐phase microextraction (SPME) fiber used to specifically recognize thiabendazole (TBZ) in citrus and soil samples was developed. The complex‐imprinted polymer was introduced as a novel SPME coating using a “complex template” constructed with Cu(II) ions and TBZ. The recognition and enrichment properties of the coating in water were significantly improved based on the metal ion coordination interaction rather than relying on hydrogen bonding interactions that are commonly applied for the molecularly imprinting technique. Several parameters controlling the extraction performance of the complex‐imprinted‐polymer‐coated fiber were investigated including extraction solvent, pH value, extraction time, metal ion species, etc. Furthermore, SPME coupled with HPLC was developed for detection of TBZ, and the methods resulted in good linearity in the range of 10.0–150.0 ng/mL with a detection limit of 2.4 ng/mL. The proposed method was applied to the analysis of TBZ in spiked soil, orange, and lemon with recoveries of 80.0–86.9% and RSDs of 2.0–8.1%. This research provides an example to prepare a desirable water‐compatible and specifically selective SPME coating to extract target molecules from aqueous samples by introducing metal ions as the mediator.  相似文献   

9.
A portable sample preparation device with a magnetic polymer monolith as the extraction medium was constructed. The monolith was synthesized by polymerizing methacrylic acid and ethylene dimethacrylate around a cylindrical magnet. In this way, the monolith with a magnetic core could be readily attached to the extraction device by magnetism. The constructed device was evaluated for the enrichment of UV filters in water samples, followed by high‐performance liquid chromatographic analysis. The extraction efficiency for the targets was satisfactory with no matrix interference. Good linearities were obtained for the UV filters with the correlation coefficients >0.9986. The limits of detection and quantification for the UV filters were 0.3–0.8 and 1.0–2.4 ng/mL, respectively. The recoveries of the UV filters from the spiked water samples at the concentration of 100 ng/mL were 95.3–101.7%, with relative standard deviations <10%. Accordingly, the proposed portable device was demonstrated to be suitable for on‐site simultaneous sampling, purification, and preconcentration within a single step.  相似文献   

10.
A poly(vinylphenylboronic acid–ethylene glycol dimethacrylate) monolithic material incorporated with graphene oxide was synthesized inside a poly(ether ether ketone) tube. This tube with boronate affinity monolith was coupled with a high‐performance liquid chromatography system through a six‐port valve to construct an online solid‐phase microextraction with high‐performance liquid chromatography system. The performance of this solid‐phase microextraction with high‐performance liquid chromatography system was demonstrated by standard glycoprotein in aqueous samples, namely, horseradish peroxidase. Some parameters that affect the extraction performance were investigated, including sampling rate, pH of sample solution, and sampling volume. Under the optimized conditions, the developed method showed high extraction efficiency toward horseradish peroxidase. The addition of graphene oxide greatly increased the extraction efficiency of boronate affinity monolith for horseradish peroxidase. The limit of detection of the proposed method was as low as 0.01 μg/mL by using ultraviolet detection. The recognition specificity was also evaluated by analyzing the mixture of bovine serum albumin (nonglycoprotein) and horseradish peroxidase. The results showed that this material could selectively extract horseradish peroxidase from the mixture, indicating its good specificity toward glycoproteins. The proposed method was further applied for analyzing rat plasma samples spiked with horseradish peroxidase. Good recovery and repeatability were obtained.  相似文献   

11.
Electrochemically co‐deposited sol–gel/Cu nanocomposites have been introduced as a novel, simple and single‐step technique for preparation of solid‐phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol–gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC‐UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL−1. Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency.  相似文献   

12.
In this paper, a simple, fast and in situ polymerization strategy to prepare monolithic molecularly imprinted polymer (MIP) fibers for solid phase microextraction (SPME) is developed using silica capillaries as molds. With the help of microwave irradiation, polymerization was carried out in 5.5 min using olivetol as a template molecular, α‐methacrylic acid (MAA) as a functional monomer and ethylene dimethacrylate (EDMA) as a crosslinker, toluene and dodecanol as the binary porgens. The resulted MIP fibers were finally obtained after silica being etched away with a controlled length, and subsequently characterized by scanning electron microscope (SEM) and Fourier transform infrared absorption spectroscopy (FT‐IR). Under the optimal extraction conditions, a simple method based on the coupling of MIP SPME with high performance liquid chromatography (HPLC) was used for the selective determination of the model mixtures of olivetol, phenol and m‐toluidine in lake water and wheat bran samples. The recoveries of olivetol, phenol and m‐toluidine for both samples were in the range of 87.3‐93.6%, 21.4‐27.2%, 18.9‐24.8% at three spiked levels, respectively, demonstrating that higher extraction and the specific absorption occurred between the template molecule and the prepared MIP fiber.  相似文献   

13.
A novel molecularly imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross‐linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy and vibrating sample magnetometry. Adsorption studies demonstrated that the magnetic imprinted polymers possessed excellent selectivity toward curcumin with a maximum capacity of 16.80 mg/g. Combining magnetic extraction and high‐performance liquid chromatography technology, the magnetic imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was applied for the rapid separation and enrichment of curcumin from ginger powder and kiwi fruit root successfully.  相似文献   

14.
An analytical method based on online combination of polymer monolith microextraction (PMME) technique with hydrophilic interaction LC (HILIC)/MS is presented. The extraction was performed with a poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic column while the subsequent separation was carried out on a Luna silica column by HILIC. After 1:1 v/v dilution with 20 mM phosphate solution at pH 7.0 and centrifugation, urine sample was directly used for extraction. After optimization, 85% ACN (containing 0.3% formic acid v/v) was used for rapid online elution, which was also the mobile phase in HILIC to avoid band broadening during separation or carry‐over that was usually observed in PMME‐RP LC system. Online automation of extraction and separation procedures was realized under the control of a program in this study. The developed method was applied to rapid and sensitive monitoring of three β2‐agonist traces in human urine. The LODs (S/N = 3) of the method were found to be 0.05–0.09 ng/mL of β2‐agonists in urine. The recoveries of three β2‐agonists spiked in five different urine samples ranged from 79.8 to 119.8%, with RSDs less than 18.0%.  相似文献   

15.
In this work, molecularly imprinted nanoparticles (MINPs) were applied as selective adsorbent for ultrasound‐assisted micro‐solid‐phase extraction (UAMSPE) of doxepin (DP) from human plasma samples, which was then cleaned up, pre‐concentrated and subjected to HPLC. The MINPs were synthesized based on a non‐covalent approach by precipitation polymerization utilizing methacrylic acid and styrene as functional monomers, DP as template, ethylene glycol dimethacrylate as cross‐linker and 2,2‐azobisisobutyronitrile (AIBN) as initiator. The obtained MINPs were characterized by Fourier transform‐infrared and field emission scanning electron microscopy. Factors influencing the efficiency of UAMSPE such as sonication time, volume of eluent solvent and amount of sorbent were investigated using a central composite design and the optimal points were identified as 4 min of sonication time, 380 μL of eluent solvent and 30 mg of sorbent. Under optimized conditions, the proposed method has linear responses in the range of 0.2–2000 ng mL–1, with a satisfactory limit of detection of 0.04 ng mL–1 and limit of quantification of 0.11 ng mL–1.  相似文献   

16.
A high‐throughput micro‐solid‐phase extraction device based on a 96‐well plate was constructed and applied to the determination of pesticide residues in various apple samples. Butyl methacrylate and ethylene glycol dimethacrylate were copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless‐steel meshes of 96‐micro‐solid‐phase extraction device and used as an extracting unit. Before the micro‐solid‐phase extraction, microwave‐assisted extraction was employed to facilitate the transfer of the pesticide residues from the apple matrix to liquid media. Then, 1 mL of the aquatic samples was transferred into the 96‐well plate and the 96‐micro‐solid‐phase extraction device was applied for the extraction of the selected pesticides. Influential parameters, such as sorbent‐to‐sorbent reproducibility, microwave‐assisted extraction time, ionic strength and micro‐solid‐phase extraction time, were optimized. The limits of quantitation were below 120 μg/kg, which are lower than the maximum residue limits. The developed method was successfully implemented for the extraction and determination of the selected pesticides from 20 different apple samples gathered from local markets. Phosalone was identified and quantified at the concentration level of 147 (±16.4) μg/kg in one of the samples.  相似文献   

17.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

18.
This work reports the preparation of molecularly imprinted polymer particles for the selective extraction and determination of four benzophenones from aqueous media. The polymer was prepared by using 4‐vinylpridine as functional monomer, ethylene glycol dimethacrylate as cross‐linker, acetonitrile as porogenic solvent and 2,2’,4,4’‐tetrehydroxybenzophenone as template. Good specific adsorption capacity (Qmax = 27.90 μmol/g) for 2,2’,4,4’‐tetrehydroxybenzophenone was obtained in the sorption experiment and good class selectivity for 2,2’,4,4’‐tetrehydroxybenzophenone, 2,4‐dihydroxybenzophenone, 2,2’‐dihydroxy‐4‐methoxybenzophenone, 2,2’‐dehydroxy‐4,4’‐dimethoxybenzophenone was demonstrated by the chromatographic evaluation experiment. Factors affecting the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were investigated systematically. An accurate and sensitive analytical method based on the molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection has been successfully developed for the simultaneous determination of four benzophenones from tap water and river water with method detection limits of 0.25–0.72 ng/mL. The recoveries of benzophenones for water samples at two spiking levels (500 and 5000 ng/mL for each benzophenone) were in the range of 86.9–103.3% with relative standard deviations (n = 3) below 9.2%.  相似文献   

19.
Novel 3‐aminophenylboronic acid functionalized poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) microspheres were prepared for the solid‐phase extraction of glycopeptides/glycoproteins. The adsorption efficiency, maximum adsorption capacity, and specific recognition of the microspheres to glycoprotein were investigated. The results indicated excellent adsorption of glycoproteins by the microspheres, which are attributed to the well‐defined boronic acid brushes on the microsphere surfaces. Furthermore, a solid‐phase extraction microcolumn filled with the microspheres was used to efficiently enrich glycopeptides from enzymatic hydrolysates from human serum samples. The mass spectrometry results demonstrated that the method is suitable for the separation and enrichment of glycopeptides/glycoproteins from complex biological samples.  相似文献   

20.
A novel, low‐cost and effective in‐needle solid‐phase microextraction device was developed for the enrichment of trace polycyclic aromatic hydrocarbons in water samples. The in‐needle solid‐phase microextraction device could be easily assembled by inserting hydrofluoric acid‐etched wires, which were used as adsorbent, into a 22‐gauge needle tube within spring supporters. Compared with the commercial solid‐phase microextraction fiber, the developed device has higher efficiency for the extraction of polycyclic aromatic hydrocarbons with four to six rings from water samples using the optimized extraction conditions. With gas chromatography equipped with a flame ionization detector, the limits of detection for the polycyclic aromatic hydrocarbons with four to six rings ranged from 0.0020 to 0.0067 ng/mL. The relative standard deviations for one needle and needle‐to‐needle extractions were in the range of 5.2–9.9% (n = 5) and 3.4–12.3% (n = 5), respectively. The spiked recoveries of the polycyclic aromatic hydrocarbons in tap water samples ranged from 73.2 to 95.4%. This in‐needle solid‐phase microextraction device could be a good field sampler because of the low sample loss over a long storage time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号