首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

2.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

3.
An efficient combination strategy based on high‐speed shear dispersing emulsifier technique and high‐performance countercurrent chromatography was developed for on‐line extraction and isolation of carotenoids from the fruits of Lycium barbarum. In this work, the high‐speed shear dispersing emulsifier technique has been employed to extract crude extracts using the upper phase of high‐performance countercurrent chromatography solvent system composed of n‐hexane?dichloromethane?acetonitrile (10:4:6.5, v/v) as the extraction solvent. At the separation stage, the high‐performance counter‐current chromatography process adopts elution–extrusion mode and the upper phase of the solvent system as stationary phase (reverse‐phase mode). As a result, three compounds including zeaxanthin, zeaxanthin monopalmitate, and zeaxanthin dipalmitate with purities of 89, 90, and 93% were successfully obtained in one extraction‐separation operation within 120 min. The targeted compounds were analyzed and identified by high‐performance liquid chromatography, mass spectrometry, and NMR spectroscopy. The results indicated that the present on‐line combination method could serve as a simple, rapid, and effective way to achieve weak polar and unstable compounds from natural products.  相似文献   

4.
An efficient strategy for extracting and separating five lignans from Schisandra chinensis (Turcz.) Baill has been developed using supercritical fluid extraction (SFE) and high‐speed counter‐current chromatography (HSCCC) in the present study. First, the extraction was performed by a preparative SFE system under 15 MPa of pressure at 36°C for 4 h. Then, the SFE extract was successfully separated and purified by HSCCC with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water (6:4:5:5, 6:4:6:4, 6:4:8:2, v/v) in a stepwise elution mode. The fractions were analyzed by HPLC, and the chemical structures of the products were identified by ESI‐MS and 1H NMR spectroscopy. As a result, a total of 12.5 mg of schisandrin at 98.0% purity, 7.1 mg of gomisin A at 98.1% purity, 1.8 mg of schisantherin B at 93.3% purity, 4.4 mg of deoxyschisandrin at 92.9% purity, and 6.8 mg of γ‐schisandrin at 89.1% purity were obtained from 300 mg crude extract in a one‐step purification.  相似文献   

5.
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid‐phase extraction with high‐speed counter‐current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid‐phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid‐phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two‐phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid‐phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p‐coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution–extrusion counter‐current chromatography and back‐extrusion counter‐current chromatography were compared.  相似文献   

6.
In this paper, high‐speed counter‐current chromatography (HSCCC), assisted with ESI‐MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7′‐O‐formylbrefeldin A (6.5 mg, 95.0%) and 7′‐O‐acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK‐15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two‐step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two‐step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n‐hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X‐ray crystallography, ESI‐MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.  相似文献   

7.
A consecutive preparation method based upon accelerated solvent extraction (ASE) coupled with high‐speed counter‐current chromatography (HSCCC) was presented and aesculin was obtained from Cortex fraxinus. The extraction condition of ASE was optimized with response surface methodology; some significant parameters such as the solvent system and its stability, the amount of loading sample in HSCCC were also investigated. The original sample was first extracted with methanol at 105°C and 104 bar for 7 min using ASE, then the extracts were consecutively introduced into the HSCCC system and separated and purified with the same ethyl acetate/n‐butanol/water (7:3:10, v/v/v) solvent system for five times without further exchange and equilibrium. About 3.1 ± 0.2 mg/g in each time and total of 15.4 mg/g aesculin with purity over 95% was isolated from Cortex fraxinus. The results demonstrated that the consecutive preparation method was time and solvent saving and high throughput, it was suitable for isolation of aesculin from Cortex fraxinus, and also has good potential on the separation and purification of effective compounds from natural product.  相似文献   

8.
High‐speed countercurrent chromatography (HSCCC) combined with biphasic chiral recognition was successfully applied to the resolution of phenylsuccinic acid enantiomers. d ‐Isobutyl tartrate and hydroxypropyl‐β‐cyclodextrin were employed as lipophilic and hydrophilic selectors dissolved in the organic stationary phase and aqueous mobile phase, respectively. The two‐phase solvent system was made up of n‐hexane/methyl tert‐butyl ether/water (0.5:1.5:2, v/v/v). Impacts of the type and concentration of chiral selectors, the pH value of the aqueous phase solution as well as the temperature on the separation efficiency were investigated. By means of preparative HSCCC, pure enantiomer was obtained by separating 810 mg of racemate with a purity >99.5% and a recovery rate between 82 and 85%. The experimental results indicate that biphasic recognition HSCCC provide a promising means for efficient separation of racemates.  相似文献   

9.
Three-phase solvent systems were efficiently utilized for high-speed counter-current chromatography (HSCCC) to separate multiple components with a wide range of hydrophobicity. The compositions of three-phase systems were optimized according to their physical parameters such as volume ratio, viscosity and specific gravity of upper (UP), middle (MP) and lower (LP) phases. The three-phase systems composed of n-hexane-methyl acetate-acetonitrile-water (4:4:3:4, v/v/v/v) was selected for HSCCC separation of a mixture of 15 standard compounds with a wide range in hydrophobicity from beta-carotene to tryptophan. The separation was initiated by filling the column with a mixture of MP and LP both as a stationary phase followed by elution with UP to separate the hydrophobic compounds. Then the mobile phase was switched to MP to elute the moderately hydrophobic compounds, and finally the polar compounds still retained in the column were fractionated by eluting the column with LP. The system successfully resolved all 15 compounds in one-step operation in 70 min.  相似文献   

10.
Supercritical fluid extraction (SFE) of orotinin, orotinin-5-methyl ether and licoagrochalcone B from Patrinia villosa was performed. The optimization of parameters including pressure, temperature, modifier and sample particle size on yield was carried out using an analytical-scale SFE system. The process was then scaled up by 100 times using a preparative SFE system under the optimized conditions of 25 MPa, 45 degrees C, a sample particle size 40-60 mesh and modified CO2 with 20% methanol. The yield of the preparative SFE was 2.82% (crude extract I) and the combined yield of orotinin, orotinin-5-methyl ether and licoagrochalcone B was 0.82 mg/g of dry sample mass. Then the crude extract I was re-dissolved in methanol and methanol soluble fraction (crude extract II, 0.17%) was obtained, which was successfully isolated and separated by a preparative high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (5:6:6:6, v/v/v/v) by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml/min after 3 h. The target compounds isolated and purified by HSCCC were analyzed by high performance liquid chromatography. The separation produced total of 38.2 mg of orotinin at 99.2% purity, 19.8 mg of orotinin-5-methyl ether at 98.5% purity and 21.5 mg of licoagrochalcone B at 97.6% purity from 400 mg of the crude extract in a one-step separation. The recoveries of orotinin, orotinin-5-methyl ether and licoagrochalcone B were 91.1, 91.6 and 90.3%, respectively, and the chemical structure identification was carried out by UV, IR, MS, 1H NMR and 13C NMR.  相似文献   

11.
A rapid and convenient method was established to preparatively isolate the three ellagic acid types of compounds, which were the main polyphenols in Euphorbia pekinensis, by flexibly applying solvent extraction combined with counter‐current chromatography (CCC). The total extract (extracted using 95% ethanol) of E. pekinensis was pretreated by two simple steps before CCC isolation, following the procedure: the total extract was extracted by classical solvent extraction using petroleum ether and ethyl acetate, respectively, and then the ethyl acetate extract was suspended using 95% ethanol, after being allowed to stand overnight, the sediment was obtained. Partial sediment (100 mg) was then directly separated by CCC with a two‐phase solvent system composed of chloroform‐95% ethanol‐water‐85% formic acid (50:50:50:5, v/v/v/v). About 22 mg of 3,3′‐dimethoxy ellagic acid (1), 12 mg of 3,3′‐di‐O‐methyl‐4‐O‐(β‐d ‐xylopyranosyl)ellagic acid (2), and 35 mg of ellagic acid (3) with purities of 96.0, 95.2, and 95.4% were obtained respectively in one step within 4 h. After being purified by washing with methanol, the purities of the three compounds obtained were all above 98%. The purities were determined by HPLC and their chemical structures were further identified by 1H and 13C NMR spectroscopy. The recoveries were calculated as 84.6, 85.7, and 89.5%, respectively. The result demonstrated that the present isolation method was rapid, economical and efficient for the preparative separation of polyphenols from E. pekinensis.  相似文献   

12.
A three‐phase solvent system was efficiently applied for high‐speed counter‐current chromatography to separate secondary metabolites with a wide range of hydrophobicity in Dicranostigma leptopodum. The three‐phase solvent system of n‐hexane/methyl tert‐butyl ether/acetonitrile/0.5% triethylamine (2:2:3:2, v/v/v/v) was selected for high‐speed counter‐current chromatography separation. The separation was initiated by filling the column with a mixture of intermediate phase and lower phase as a stationary phase followed by elution with upper phase to separate the hydrophobic compounds. Then the mobile phase was switched to the intermediate phase to elute the moderately hydrophobic compounds, and finally the polar compounds still retained in the column were fractionated by eluting the column with the lower phase. In this research, 12 peaks were eluted out in one‐step operation within 110 min, among them, eight compounds with acceptable purity were obtained and identified. The purities of β‐sitosterol, protopine, allocryptopine, isocorydione, isocorydine, coptisine, berberrubine, and berberine were 94.7, 96.5, 97.9, 86.6, 98.9, 97.6, 95.7, and 92.8%, respectively.  相似文献   

13.
Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker‐Gawler. The optimization of parameters was carried out using an orthogonal test L9 (3)4 including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55°C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high‐speed counter‐current chromatography (HSCCC) with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6‐aldehydo‐isoophiopogonone A, and 6‐formyl‐isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6‐aldehydo‐isoophiopogonone A (98.3% purity) and 13.5 mg of 6‐formyl‐isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI‐MS and NMR analysis.  相似文献   

14.
Niu L  Xie Z  Cai T  Wu P  Xue P  Chen X  Wu Z  Ito Y  Li F  Yang F 《Journal of separation science》2011,34(9):987-994
High‐speed counter‐current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two‐phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12‐hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H‐NMR, 13C‐NMR, and LC‐ESI‐Q‐TOF‐MS/MS analyses.  相似文献   

15.
In our present study, two groups of xanthones isomers (1‐hydroxy‐3,5,8‐trimethoxyxanthone and 1‐hydroxy‐3,7,8‐trimethoxyxanthone; 1,8‐dihydroxy‐3,7‐dimethoxyxanthone and 1,8‐dihydroxy‐3,5‐dimethanolxanthone) and other two xanthones (3‐methoxy‐1,5,8‐trihydroxyxanthone and 3,5‐dimethoxy‐1‐hydroxyxanthone) were separated from Swertia franchetiana . First, a solvent system composed of petroleum ether/methanol/water (2:1:0.6, v/v) was developed for the liquid–liquid extraction of these xanthones from the crude extract. Then, an efficient method was established for the one‐step separation of these six xanthones by high‐speed countercurrent chromatography using n‐hexane/ethyl acetate/methanol/ethanol/water (HEMEW; 6:4:4:2:4, v/v) as the solvent system. The results showed that liquid–liquid extraction could be well developed for efficient enrichment of target compounds. Additionally, high‐speed countercurrent chromatography could be a powerful technology for separation xanthones isomers. It was found ethanol could be a good methanol substitute when the HEMEW system could not provide good separation factors.  相似文献   

16.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

17.
Peng J  Dong F  Xu Q  Xu Y  Qi Y  Han X  Xu L  Fan G  Liu K 《Journal of chromatography. A》2006,1135(2):151-157
Supercritical fluid extraction (SFE) of daphnoretin, 7-methoxy-daphnoretin and 1,5-diphenyl-1- pentanone from Stellera chamaejasme L. was performed. An orthogonal L9 (3)4 test design was applied to select the optimum extraction parameters including pressure, temperature, modifier and sample particle size on yield using an analytical-scale SFE system. The process was then scaled up by 100 times using a preparative SFE system under the optimized conditions of 25 MPa of pressure, 45 degrees C of temperature, 40-60 mesh of sample particle size and modified CO2 with 20% methanol. The yield of the crude extract from preparative SFE was 2.65%, which contained daphnoretin 25.2%, 7-methoxy-daphnoretin 22.8% and 1,5-diphenyl-1-pentanone 21.1%, respectively. Then the crude extract was successfully isolated and separated by preparative high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:13:13:10, v/v) by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml/min after 90 min. The target compounds isolated and purified by HSCCC were analyzed by high-performance liquid chromatography (HPLC). The separation produced total of 69.2mg of daphnoretin at 99.2% purity, 63.4 mg of 7-methoxy-daphnoretin at 98.7% purity and 58.3 mg of 1,5-diphenyl-1-pentanone at 98.1% purity from 300 mg of the crude extract in one-step separation. The recoveries of daphnoretin, 7-methoxy-daphnoretin and 1,5-diphenyl-1-pentanone were 90.8, 91.5 and 90.4%, respectively, in HSCCC isolation step and the chemical structure identification was carried out by MS, 1H NMR and 13C NMR.  相似文献   

18.
Enrichment of the anti‐tumor compound barbigerone along with a rotenoid derivative from Millettia pachycarpa Benth. was performed by a two‐step high‐speed counter‐current chromatography (HSCCC) separation process. In the first step, 155.8 mg of target fraction (Fra6) was obtained from 400 mg ethyl acetate extract of M. pachycarpa Benth. with an increase in barbigerone from 5.1 to 13% via HSCCC using a solvent system of n‐hexane–ethyl acetate–methanol–water (5:4:5:3, v/v) under normal phase head to tail elution. HSCCC was repeated to eliminate the major contaminant in this initial fraction 6. After a separation time of 65 min, 22.1 mg barbigerone of 87.7% purity was obtained from Fra6 with the ternary solvent system of n‐hexane–methanol–water (2:2:1, v/v) under normal phase elution. Finally, preparative HPLC was employed for the further isolation of barbigerone and the rotenoid derivative. The structures were confirmed by ESI‐MS, 1H NMR and 13C NMR.  相似文献   

19.
Preparative high‐speed counter‐current chromatography (HSCCC) was successfully applied to the isolation and purification of three stilbene oligomers from Vitis chunganeniss using stepwise elution with a pair of two‐phase solvent systems composed of n‐hexane–ethyl acetate–methanol–water at (2:5:2:5, v/v) and (1:2:1:2, v/v). The preparative HSCCC separation was performed on 800 mg of crude sample yielding hopeaphenol (21.1 mg), amurensin G (37.2 mg) and vitisin A (95.6 mg) in a one‐step separation, with purities over 95% as determined by HPLC. The structures of these three compounds were identified by MS, 1H NMR and 13C NMR. In addition, their antioxidant activities were screened by DPPH assay, where vitisin A showed strong antioxidant activity. Further EPR experiments with spin‐trapping technique demonstrated that vitisin A is a potent and selective singlet oxygen quencher, which may be used in singlet oxygen‐mediated diseases as a pharmacological agent.  相似文献   

20.
Xu Y  Han X  Dong D  Xu L  Qi Y  Peng J  Zhan L 《Journal of separation science》2008,31(20):3638-3646
Supercritical fluid extraction (SFE) was used to extract diosgenin, linoleic acid, and linolenic acid following acid hydrolysis from Rhizoma dioscoreae, a famous traditional Chinese medicine. The process was performed using a preparative SFE system under 35 MPa of pressure, 65 degrees C of temperature, and modified CO(2) with 95% ethanol for 180 min dynamic extraction. Then, the crude extract was successfully isolated and separated by high-speed counter-current chromatography (HSCCC) with evaporative light scattering detection (ELSD). A two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water was used for HSCCC separation in a stepwise elution mode. The upper phase of the solvent system at the volume ratio of 1:1:1.4:0.6 by volume was used as the stationary phase, and the mobile phase after 200 min was changed into the lower phase of the solvent system at the volume ratio of 1:1.2:1.4:0.6 by volume. The separation produced a total of 20.8 mg diosgenin, 12.1 mg linoleic acid, and 18.4 mg linolenic acid from 300 mg crude extract in one-step purification. The purities of the products were 98.9, 99.0, and 99.4%, respectively, as determined by HPLC. Their chemical structures were identified by MS, UV, and the standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号